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Technical Background

Develop physically informed models to capture degradation and predict
durability of Nickel-based superalloys during cyclic operations in USC and
A-USC power plants components where thermo-mechanical fatigue and
creep damage are occurring at the same time. 300,000h operation.
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M:crostructurally informed models capturing damage accumulation

Program Objective: Develop High Fidelity Materials Models
for Ni-based Alloys under cyclic and longterm creep loadings
State-of-the-art experimental methods: strain mapping, diffraction

patterns using high energy synchotron, dislocation activity captured
using transmission electron microscopy.

Microstructure moddmg Precipitation model Crystal plasticity model.
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* Multiscale modeling for creep
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« Continuum scale modeling of
a boiler component
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Statement of project obje

* Provide physically informed models, capturing the microstructural changes taking place in the industrial
components under cyclic loading and exposure to high stress and temperature for long operating life

Task 2. 2020-2021

Task 3. 2020

Task 4. 2020-2022

Task 5.2021-2022

Develop Quantitative
Understanding of Microstructure
Evolution, Deformation and
Damage Mechanisms of H282

2.1. Perform High Temperature
Tensile and Isothermal Low Cycle
Creep-Fatigue Tests (Completed)

2.2 Perform cyclic testing on single
step aging heat-treated Haynes 28

alloy (on track)

2.3. Perform Thermo-Mechanical
Fatigue Tests (Completed)

2.4. Characterize Microstructures o

Test Specimens from Sub-Tasks 2.1,
2.2 and 2.3 (Completed) ‘
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Perform Microscale Modeling of
Microstructure and Strain
Evolution

3.1. Perform Modeling of the Rate of
Precipitation and Growth of Gamma
Prime Particles in the Haynes 282
Microstructure (Completed)

3.2. Perform Crystal Plasticity (CP)
Modeling of Haynes 282

(Completed)

“Analysis Software (on track)

Develop Continuum Damage
Mechanics (CDM) Model of
Haynes 282

4.1. Develop CDM Model Framework
(Completed)

4.2.Calibrate, Validate and
Document the CDM Model
Framework(Completed)

4.3. Integrate CDM Model
Framework into Finite Element
Analysis Software (Completed)

4.4. Couple Transient Thermal
Analysis to CDM Model
Framework in Finite Element

=)

Perform Structural Modeling
of a Thick Wall Boiler
Component

5.1 Perform Baseline CDM Analyses
of a Thick Wall Boiler Component
(on track)

5.2. Perform Damage Sensitivity
Studies on a Thick Wall Boiler
Component (on track)




Plasticity and Creep Material Model

p=p, 4 (pf _ ,00)(1 _ exp( _ Etotal_inelastiC))

Etotal — Selastic + Etotal_inelastic+ Sthermal total strain
Micro structural parameters/ Fitted parameters
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Internal variables account for
» Dislocation density evolution p
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elastic _ e . .
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Model Predictions and Experiments

LCF. 1100°F. 20cmp SPLCF, 1100°F, 4h hold time

00 800
a0 500 PP
— 400 = 400 — 50
a o Ly I
[ = & 200 o
2 8 = b
@ 0 £, - © =1
@ n 173 w 0
0 om 1] ']
= = -200
(0] w0 i}
- 400 fr:] —=—Ifode FEA
aco] el 800 o —Epeined
Mkl Mo Port
800 o ! 2 ‘ 9 . -800
: T . . . . . ! ! )
* ! : ‘ Lo oo o 2 2 4 e 8 10 12 14 0 50 5 0w 5w % &
Total strain [in/in] d Total strain [in/in] 10 Time [h]
Relaxation, 1100°F ol o o o o . .
.
00 .. 1100°F, 0.5%, 0.7% and 1% alternating strain
600 800
400 600 - Ty
400 .a. 600/ T
= o 200 L
o 200 400 o
= = -
E o @ 0 o 200r = T
% -200 g 200 %‘ oh E.
~K
400 @ 3 g
400 = 200t &
-600 —&— Madel FEM w
Experiment 600 —&— Model FEM 400 | 400
MOdeI -FEM 500 T Model Mater Point s
. 0 0002 D004 0006 D008 001 0012 0014 -800 Meodel Mater Point 600 [ 800
Total strain [in/in] 0 > 4 5 8 10 o0l P
Time [h] e
-2 2 4 6 8 10 12 Time ]
. . o LCF’ 14000F’ 20 P Total strain [in/in] 103
Model - Material Point R K- oF. 4h hold ti
—— 2™ = / SPLCF, 1400 F,4 old time
400 “ 0
5 a0 G 0
o 200 P
= g 400 o
0 w 0 = p I~ 200 1
Experiment 2 2 = it g = T
5 200 3 = =Exporimart =3 g
I w B e Modie] Matter Point » 0 =
] 'SIREE 2 2 o
400 ] £ 20 H
2 &
-600 -400 @
a0
-800 -600
Ge0 -@— Model FEM
-2 0 2 4 6 8 10 12 14 -800 —;m:‘ha«m -
= s 7 800 o s P
Total strain [in/in] <103 9 ’ ° : 2 ® $ 2 4 6 8 10 12 14
Timn 1 s Toral i - ° s 5w = wm w W
otal strain [in/in] ® Time Ml
90 “00 o o o o . .
»  Relaxation. 1400°F wo 1400°F, 0.5%, 0.7% and 1% alternating strain
70 4 0 600 - 00
& e g &0 400 a0 l-"'!
2w %500 g 200 g znn
3 400 0 400 =, .
o p 8 g .
‘ubj 30 ﬁ 30 & 20 E o
20 —e—ocel FEM 200 == ocel FEN - .
e E it e Exeimert
100 s ol Maler Point 100 Mode! Mater Paint 600 T 600
_ 0 . . . . ! . ) . 0 . . . . ! ) Epomont _ .
odel Mater Point ¥
0 0.002 0004 0.006 0.008 0.01 0.012 0014 0 2 4 8 8 10 12 090 —
o ) g 5 F S S 5 % o 2 a4 s s 10 12 1w s s 2
Total strain [in/in] Time [h] Total strain [in/in] 10 Time [h]



Model Predictions and Experiments
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Model Predictions and Experiment DIC Measurements on Notch Tests

Stress controlled cyclic loading at 1100°F
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Model Predictions and Experiment DIC Measurements on Notch Tests

Stress controlled cyclic loading at 1400°F
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Model Predictions and Experiment DIC Measurements on Notch Tests

, i r 01 57 0.03
0.1 5r¢ 0.03 : : '
0.08
0.08 ’ | - _ ’ 0.02
0.06 . X 0.06 4
L P | - oo DIC
0.04 ! : R
—_— —_— E .
E 0.02 E or 0 r . r r 0.02E 0r 0 Stl'a N
> > >
) 0 Measurements
-0.01 -0.01
0.02 -0.02
-0.02 -0.02
-0.04 ! -0.04
|
006 5 — 003 006 -5 .
2 0 o 0.06 -5 0.03

X [mm]
-1z -.027243 -.045165 M d |
-.06 —.015 -.015 ode
0 -.0L
. -.01 . .
| Predictions
.02 -.003 --Ge3
.03 o 4
.04 o1 .01
.06 oz .02
17 ea 63
T 0.14
QO Notch Region DIC —O—IE:::::E
O  Average DIC 012 —#—Creep
0.08 - =—m— Average FEM ——Total

= Notch FEM
=—+#— Outside Notch FEM
{> Outside Notch DIC

©

o

[e]
o
o
=

o
o
=

Strain infin
Strain infin

©
o
K

0.02

0 20 40 60 80 100 120 140
Time minutes

0 20 40 60 80 100 120 140
Time minutes



Structural Modeling of a Boiler Component

O Perform Baseline CDM Analyses of a Thick Wall Boiler Component (in progress)

1100F (USC conditions) - benchmark configuration 1400F (AUSC conditions) -H282 alloy header (newly
Grade 91 outlet header developed model)
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Concluding Remarks

06/2021-04/2022

* Developed framework for continuum damage model coupling creep and cyclic
plasticity. Model verified against uniaxial tests.

e Completed LCF, SPLCF tests on notched specimens with local strain measurements

* Completed model validation on multiaxial stress tests (using local strain
measurements)

* Select USC and AUSC header geometries and loading conditions

Next Steps
Demonstrate material model applicability at component level

* Perform analysis of a thick wall boiler header - baseline configuration
* Perform damage sensitivity studies on a thick wall boiler header
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