Effect of Impurities on Supercritical Carbon Dioxide (Steels at 450°-650°C)

B. A. Pint, R. Pillai, J. R. Keiser

Corrosion Science & Technology Group
Materials Science & Technology Division
Oak Ridge National Laboratory

Crosscutting Program Review: May 2022

This material is based upon work supported by the Department of Energy Award Number DE-FEAA144.
Acknowledgments

• Funding: DOE Office of Fossil Energy, Crosscutting Research Program
 – S. Nathan, NETL Project monitor
• M. Howell (retired), B. Johnston — oxidation experiments
• T. Lowe — SEM, image analysis
• V. Cox — metallography
• Special thanks for alloys:
 – Tenaris (T91)
 – EPRI (VM12)
 – Sam Sham, INL (709 DOE Office of Nuclear Energy code case material)
Disclaimer:
This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
Supercritical CO$_2$ is moving towards commercialization

11/17/2021: NetPower 25MW component demonstration plant in Laporte, TX
Supercritical CO$_2$ is moving towards commercialization

8 Rivers Unveils 560 MW of Allam Cycle Gas-Fired Projects for Colorado, Illinois

8 Rivers Capital, inventor of a novel supercritical carbon dioxide (CO$_2$) cycle, plans to begin operating a 280-MW NET Power natural gas-fired plant within the Southern Ute Indian Reservation in southwest Colorado by 2025. The company on April 15 also said it will team with agricultural and processing firm Archer-Daniels-Midlands Co. (ADM) to locate a 280-MW NET Power facility in Decatur, Illinois.

The first clean fossil energy: integrated CO$_2$ capture

BUT, burning natural gas in sCO$_2$ creates impurities…
Impurities differ in indirect- & direct-fired sCO₂ cycles (i.e. closed vs. open)

Closed cycle:
“pure” CO₂ 100-300 bar

Open cycle:
sCO₂ + impurities (O₂, H₂O…)

Fossil: 2013-2015 general study
Solar: 2015-2018 700°-800°C
Fossil: 2019-21 Cermets 1000+°C
Fossil: 2015-2018 750°C
Fossil: 2020-2022 steel project

ARPA-E: 2019-22: ≥800°C HX
CO₂ compatibility evaluated three ways at 400°-1200°C

- **Autoclave**: 300 bar sCO₂, 500-h cycles (400°-800°C)
 - Correct temperature and pressure
 - 4-5 cm² alloy coupons

- **Tube furnace**: 1 bar CO₂, 500-h cycles
 - Same cycle frequency as autoclave

- **“Keiser” rig**: above 800°C, 500-h cycles, 1-43 bar CO₂

- **Box furnace**: Lab. Air, 500-h cycles (baseline)
 - Studies at 1-43 bar

Baseline of research grade (RG) CO₂: ≤ 5 ppm H₂O and ≤ 5 ppm O₂

Industrial grade (IG) CO₂: 18±16 ppm H₂O and ≤ 32 ppm O₂
sCO₂ compatibility: broad range of conditions considered

400°-650°C: concern about steel carburization
- Well-known issue from CO₂-cooled reactors
 - Grade 9 steel current issue
- 550°-600°C transition temperature for normal austenitic steels

650°-800°C: Ni-based alloys
- No issues for Ni-based alloys
 - Low C solubility, protective Cr₂O₃ formation
- Similar rates for air, CO₂ and sCO₂
 - **no P effect**

>800°C: challenging for superalloys/cermets/FeCrAl
- Initial results at 0.1 & 2 MPa
 - *Subcritical P effect observed*
- Mo/W cermets need coating
- Accelerated attack of Ni-based superalloys
- SiC promising, but not MoSi₂
- FeCrAl attacked at 1200°C
 - Al₂O₃ supposed protective?

![Graph showing specimen mass change vs. exposure time](image)

Legend
- 0.1 MPa CO₂
- 2 MPa CO₂
Initial test matrix is complete

<table>
<thead>
<tr>
<th>Temperature</th>
<th>RG sCO₂</th>
<th>+1%O₂+0.1%H₂O</th>
</tr>
</thead>
<tbody>
<tr>
<td>450°C (842°F)</td>
<td>2000 h</td>
<td>1000 h</td>
</tr>
<tr>
<td>550°C (1022°F)</td>
<td>2000 h</td>
<td>1000 h</td>
</tr>
<tr>
<td>650°C (1202°F)</td>
<td>1000 h</td>
<td>1000 h</td>
</tr>
</tbody>
</table>

Focus on four steels

• Four primary alloys in test matrix
 – T91 (9Cr-1Mo)
 – VM12 (~11Cr)
 – 316H (conventional stainless steel)
 – NF709 (advanced austenitic, 20Cr-25Ni+Nb)

• 10 specimens of each alloy
• With & without impurities (open vs. closed cycle)

Baseline of research grade (RG) CO₂: ≤ 5 ppm H₂O and ≤ 5 ppm O₂

<table>
<thead>
<tr>
<th>Alloy</th>
<th>UNS</th>
<th>Cr</th>
<th>Ni</th>
<th>Mn</th>
<th>Si</th>
<th>C</th>
<th>N</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gr.91</td>
<td>K90901</td>
<td>8.6</td>
<td>0.3</td>
<td>0.5</td>
<td>0.4</td>
<td>.10</td>
<td>.05</td>
<td>0.9Mo,0.2V</td>
</tr>
<tr>
<td>VM12</td>
<td>12CrCoW</td>
<td>11.5</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td>.12</td>
<td>.04</td>
<td>1.6W,1.5Co</td>
</tr>
<tr>
<td>316H</td>
<td>S31609</td>
<td>16.3</td>
<td>10.0</td>
<td>0.8</td>
<td>0.5</td>
<td>.04</td>
<td>.04</td>
<td>2.0Mo,0.3Co</td>
</tr>
<tr>
<td>NF709</td>
<td>S31025</td>
<td>20.1</td>
<td>25.2</td>
<td>0.9</td>
<td>0.4</td>
<td>.06</td>
<td>.15</td>
<td>1.5Mo,0.2Nb</td>
</tr>
</tbody>
</table>
Pure sCO₂: Cr₂O₃ scale prevents C ingress

- 25mm long dogbone specimens
- 316H (16Cr-10Ni)
 - Cr-rich oxides = low mass gain + good ductility
 - Fe-rich oxides = high mass gain + embrittlement
- 709 (20Cr-25Ni):
 - no loss in ductility in this experiment

Pint, 2021, ECS Interfaces
Adding impurities caused accelerated attack in SS:

- $\text{sCO}_2 + 1\% \text{O}_2 - 0.1\% \text{H}_2\text{O}$ per NetPower

650°C, 300 bar

- Open box: RG sCO$_2$
- Shaded box: 1%O$_2$+0.1%H$_2$O

Minor changes for 9-12Cr steels: Thick scales in all cases

Increase for 709

Spallation for 316H
Matrix complete: Acceleration evident for 316H and 709

316H and 709 rates above the metric at 550°C

- Longer exposures may be needed to obtain more accurate steady-state rates in this environment
- What about 600°C?
- What about coatings?
- Can we do better than k_p metric assessment?
Increased C ingress with impurities

Determined by combustion analysis (bulk measurements)

Need to repeat 709 measurement
25°C tensile properties with impurities: similar effect on all

All steels show loss in ductility after 650°C sCO₂+imp compared to 650°C Ar anneal.
sCO₂ 600°C: one more RG sCO₂ experiment

- Previously 450, 550 and 650°C
 - 30 MPa, RG CO₂
 - Fill in gap + add new materials
 - 825: industry interest
 - 253MA: suggestion at NACE 2021
 - CF8C-Plus: code case in progress

- Mass change: 1ˢᵗ indications
 - 4-6 specimens of each alloy
 - Box plot: median value shown
 - Higher mass gain: Fe-rich oxide
 - 709+825 showed low mass gain
 - 253MA+CF8C-Plus: accelerating mass gain = FeOₓ nodules...

- 825: 40Ni-31Fe-23Cr-3Mo-1.7Cu-1Ti-0.5Mn-0.3Si
- CF8C-Plus: Fe-12.5Ni-19.5Cr-4Mn-0.7Nb-0.7Si-0.5Cu-0.3Mo-0.25N (ASTM spec.)
- 253MA: 65Fe-11Ni-21Cr-1.5Si-0.7Mn-0.3Mo0.15N-0.03Ce-0.01La
sCO₂ 600°C: 2021 explored some additional candidates

- **550°-600°C critical temperature**
 - 30 MPa, RG CO₂
 - 4-6 specimens of each alloy

- **Ni-based alloy 825 (Ni-31Fe-23Cr)**
 - Small mass change (as expected)
 - Similar to advanced austenitic 709 (Fe-20Cr-25Ni)

- **253MA: higher Cr, Si + Ce/La**
 - accelerating mass gain = FeOₓ nodules...

- **CF8C-Plus (cast 347): high Mn**
 - Higher strength version of CF8C
 - Also accelerating mass gain

Figure: Graph showing specimen mass change vs. exposure time for different alloys at 600°C and 300 bar. Key points:

- **825**: 40Ni-31Fe-23Cr-3Mo-1.7Cu-1Ti-0.5Mn-0.3Si
- **CF8C-Plus**: Fe-12.5Ni-19.5Cr-4Mn-0.7Nb-0.7Si-0.5Cu-0.3Mo-0.25N (ASTM spec.)
- **253MA**: 65Fe-11Ni-21Cr-1.5Si-0.7Mn-0.3Mo0.15N-0.03Ce-0.01La
Rate from 2 data points provides a comparison

- T91: in line with $sCO_2 + sH_2O$
- 316H: faster than literature
 - Due to heating in sCO_2?
- 709: low as measurable
 - 20Cr/25Ni: value of higher Ni
 - 310SS: 25Cr/20Ni, much weaker
- 253MA/CF8C+: some benefit
 - Looking for cheaper than 709
- 825: 0.01mg/cm2 mass loss
 - Average of 3-4 specimens
EPMA: measurements of C ingress for modeling

- Massive C uptake at 650°C for both alloys
- Very little uptake at 450°C for both alloys
- Collecting more EPMA data to feed modeling task
- GDOES now operational: beginning measurements
Initial steel modeling (Pillai): Calculated average C profiles and carbide fraction

Goal: predict 100,000 kh C ingress as a function of temperature for T91 and 316H
Collecting C profiles using GDOES at 450°-650°C

GDOES: Glow discharge optical emission spectroscopy

GDOES C profiles (in progress)
- Effect of temperature
- Effect of impurities
- 316H/709 comparison

Last task is to complete modeling work
Summary: sCO\textsubscript{2} is a challenging environment for steels

- At 650\textdegree-800\textdegree C, Ni-based alloys appear compatible
- Steels have problem forming protective scales:
 - 9-12\%Cr may be limited to ~500\textdegree C
 - Fe-rich oxide formation observed in sCO\textsubscript{2}
 - 316H at 600\textdegree-650\textdegree C in RG sCO\textsubscript{2}
 - Carbon ingress + embrittlement
 - 709 formed Cr-rich oxide in all cases
 - Longer times at 650\textdegree C?
 - 310HCbN/alloy 25: no C ingress at 750\textdegree C
 - Accelerated attack at 650\textdegree C with impurities
- All of these steels are affected by impurities!
Backups

RG sCO₂ + 1%O₂ + 0.25%H₂O or +0.25%H₂O or +1%O₂

750°C
1,000 h

Carbon activity (ac)

550 600 650 700 750 800

Temperature °C

Cr₂O₃ Pₜₙₙ = 1 bar

Fe₃O₄ Pₜₙₙ = 1 bar

metal dusting criteria

Fe₂O₃ Pₜₙₙ = 1 bar

All 650°C, 500 h, sCO₂

Cr-rich scale

Cr-coated T91

>100μm Fe-rich duplex scale

bare T91 50μm

bared T91 10μm

Cr-coated T91