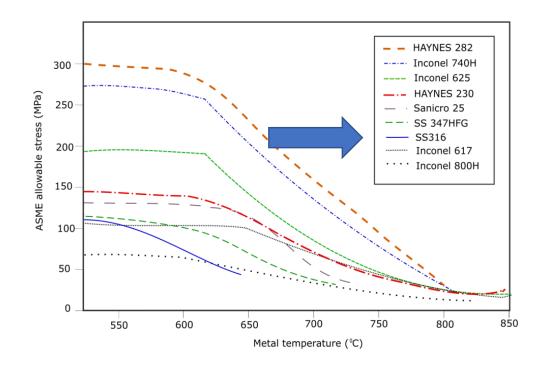


Predictive Design of Novel Ni-based Alloys G. Ouyang, D.D. Johnson and M.J. Kramer Ames Laboratory, US-DOE, Ames, IA 50011


Project Description and Objectives

Develop new alloys that can perform at elevated temperatures in supercritical steam and CO_2 environment.

Use advanced computational tools, validated by targeted experiments, to increase operating temperature of Haynes-282 by 50°C

Enable AUSC to operate above 760°C and 5000 psi

Provide 'plug-in-play alloy' alloy compatible with current Ni-based alloy production.

Challenge is to develop an efficient, high fidelity multi-element alloy design tool

IOWA STATE UNIVERSITY

OF SCIENCE AND TECHNOLOGY

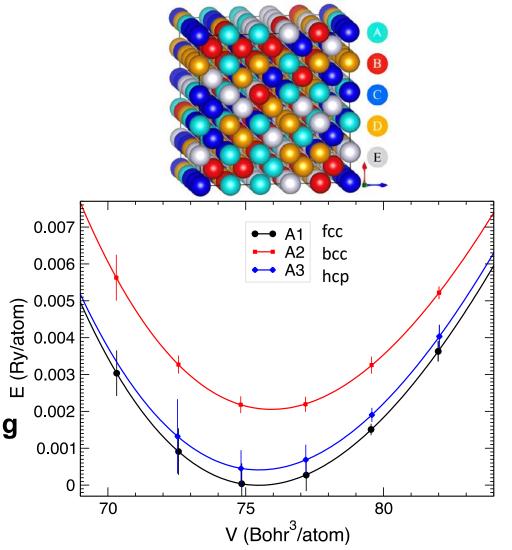
Also applicable to other applications

Timeline of the project milestones

Milestone Designation	Milestone Description	Revised Due date	Completion date
1	Baseline modeling of phase stability	09/30/2019	12/31/2019
2	Baseline characterization of H-282: dry air	09/30/2019	09/30/2019
3	Baseline modeling of Ames alloys	3/31/2020	3/31/2020
4	Fabricate and characterize Ames alloys	8/31/2020	9/31/2020
5	Finalize selection of Ames Alloys	12/31/2020	12/31/2020
6	Mechanical testing H- 282	9/30/2021	9/30/2021
7	Creep characteristics of Ames alloys	9/30/2021	9/30/2021
8	Oxidation resistance of Ames alloys	06/30/2022	In progress (90%)
9	Mechanical Properties of alloys with revised heat treatment	06/30/2022	In progress (90%)

Current Status of Project

Modeling Approach

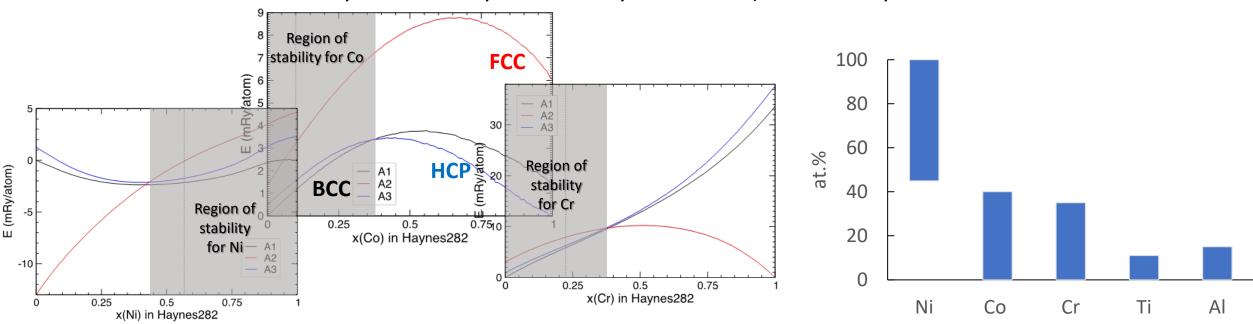

- Korringa-Kohn-Rostoker method and coherent potential approximation (KKR-CPA)
 - Highly efficient electronic structure method that allow for complex chemistries using smaller model sizes compared to DFT.
- Mean-field approximation of the T_m
 - Includes short-range ordering and clustering

U.S. DEPARTMENT OF

Accurately models complex chemistries to predict phase stability

Singh, Prashant, Gupta, Shalabh, Thimmaiah, Srinivasa, Thoeny, Bryce, Ray, Pratik K, Smirnov, Andrei V, Johnson, Duane D & Kramer, Matthew J. Vacancy-mediated complex phase selection in high entropy alloys. *Acta Mater* **194**, 540-546 (2020).

MES LABORATO



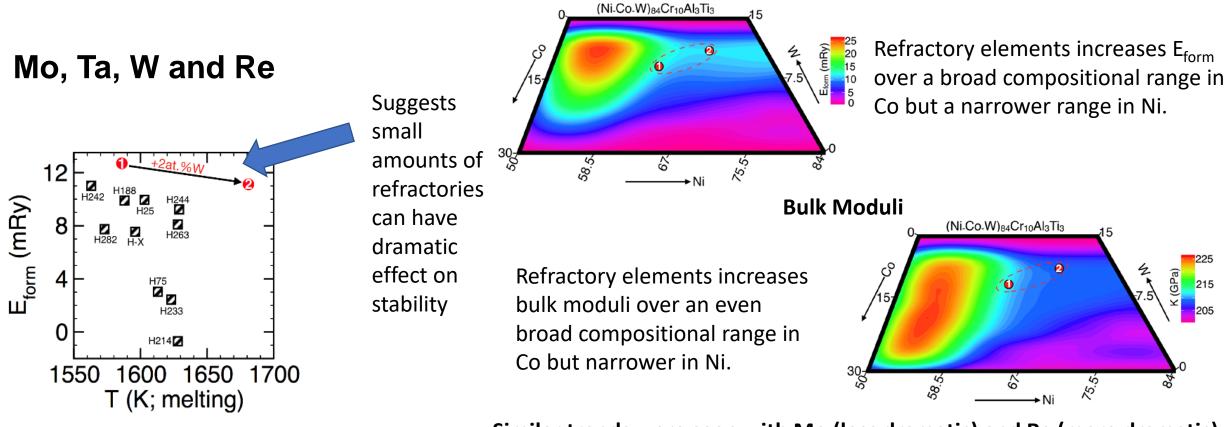
The equation of state E(V) calculation for the fcc, bcc, and hcp phases for Haynes-282: $Ni_{0.567}Cr_{0.224}Co_{0.099}Mo_{0.052}Ti_{0.026}Al_{0.032}$

Model Prediction

Investigate role of major element substitutions.

 Shaded regions show the extend to solid solution for each element (Ni, Co and Cr) in a fcc matrix compared to bcc and hcp)

Ni > 45 at. %; Co < 40 at. %; Cr < 35 at. %; Mo < 17 at. %; Ti < 11 at. %; Al < 15 at. %


Energies are shown relative to that of an elemental solid X in Haynes-282

AMES LABORAT

Role of refractories

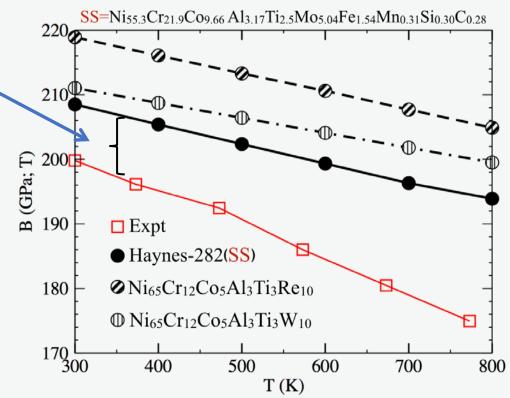
Formation Enthalpy

The calculated formation enthalpy (E_{form}) with experimentally-determined melting temperature (T_m) for common Haynes alloys.

ES LABORA'

Similar trends were seen with Mo (less dramatic) and Re (more dramatic).

Role of Fe, Hf, Nb, Si, V incorporated into the 2nd generation


Role of refractories on bulk moduli

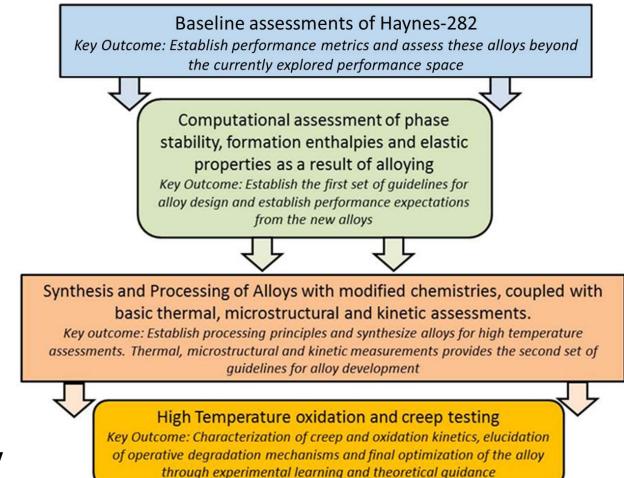
Haynes-282 bulk moduli was calculated (\bullet) and compared to experimental data (\Box).

Calculation overestimated by ~ 8-20 GPa (within 10%)

Model alloy $Ni_{65}Cr_{12}Co_5Al_3Ti_3X_{10} X = Mo, Re, W$

- Understand role of refractory elements
 - Moduli and T_m increased with increasing valance electrons
 - Are there chemical substitutions that can mimic this effect?
 - Necessary to reduce cost and density

Similar trends were seen with Mo (less dramatic).


Current Status of Project

Modeling Validation

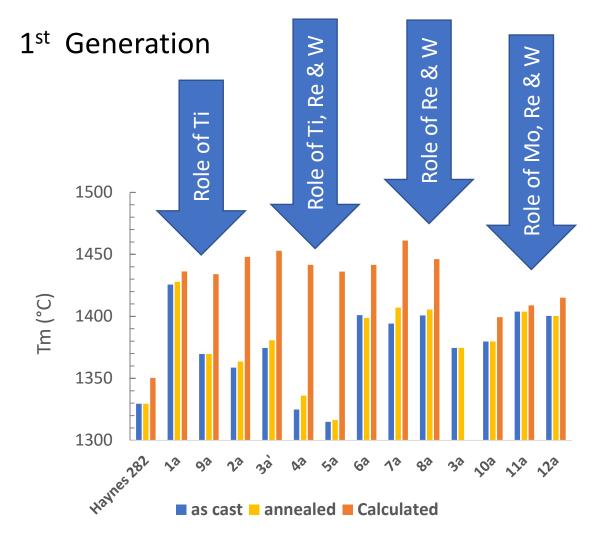
- Compare predicted values for
 - Phase stability
 - Melting Temperatures (T_m)
 - Elastic Moduli

Alloy Design Criteria

- Identify promising regions of phase space for:
 - T_m ~ > 50°C of Haynes 282
 - Elastic Moduli > 10% higher
 - Sufficient Cr, AI for oxidation stability
 - Reduce Co (cost)

Also see: Acta Materialia 189, 248-254 (2020)

Role of refractories on phase stability


Experimental and calculated T_m onsets of 1st generation samples compared to Haynes 282.

Alloys fabricated and characterized to validate model predictions.

- Model didn't correctly predict T_m for phase separate samples
 - Identified limits for the high T solid solution
- Model captured the trends in T_m for Mo, Re and W.

Ti > 3% and refractories > 5% resulted in bcc phases

Deviation from prediction

Refined suite of compositions

Ni₆₇Cr₁₃Co₈Al₃Mo₅Ti₂Fe₂ NISA24A-1 Ni₆₇Cr₁₈Co₃Al₃Mo₅Ti₂Fe₂ Ni₆₉Cr₁₀Co₅Al₃W₅Re₅Ti₃ NISA-8A NISA23A-1 NISA22A-1 Ni₆₇Cr₁₃Co₈Al₃Mo₅Ti₂Fe₁Si₁ Ni₆₉Cr₁₀Co₅Al₃Re₁₀Ti₃ NISA-7A NISA21A-1 Ni₆₇Cr₁₆Co₅Al₃Mo₅Ti₂Fe₁Si₁ Ni₆₉Cr₁₀Co₅Al₃W₁₀Ti₃ Relative intensity (a.u.) NISA-6A Ni₇₀Cr₁₆Co₂Al₃Mo₅Ti₂Fe₁Si_{0.5}C_{0.25}B_{0.25} NISA20A-1 Ni₆₅Cr₁₂Co₅Al₃W₈Ti₇ Ni₇₀Cr₁₆Co₂Al₃Mo₅Ti₂Fe₁Si_{0.5}C_{0.5} NISA19A-1 NISA-5A Ni70Cr16Co2Al3Mo5Ti2Fe1Si NISA18A-1 Ni₆₅Cr₁₂Co₅Al₃Re₈Ti₇ NISA-4A Ni₇₀Cr₁₈Co₂Al₃Mo_{2.5}Ti₂W_{2.5} NISA17A-1 Ni70Cr18Co2Al3Mo5Ti2 NISA16A-1 Ni₆₅Cr₁₂Co₅Al₃W₃Re₈Ti₄ NISA-3A Ni₇₀Cr₁₃Co₅Al₃Ti₂Re₅Fe₂ NISA15A-1 Ni₆₅Cr₁₂Co₅Al₃W₈Re₃Ti₄ NISA-2A Ni₇₀Cr₁₃Co₅Al₃Ti₂W₅Fe₂ NISA14A-1 Ni₇₀Cr₁₃Co₅Al₃Ti₂Mo₅Fe₂ Ni_{76.5}Cr_{14.1}Co_{5.9}Al_{3.5} NISA13A-1 NISA-1A Ni70Cr13Co5Al3Ti2Re5 NISA 12A ~Ni₅₆Cr₂₂Co₁₀Al_{3.3}Mo₅Ti_{2.5} H-282 as received Ni70Cr13Co5Al3Ti2W5 NISA 11A NISA 10A Ni70Cr13Co5Al3Ti2Mo5 40 50 70 100 20 30 60 80 90 110 50 20 30 40 60 70 80 90 2θ (deg.) 2θ (deg.)

1st Generation alloy

2nd Generation alloy

fcc, bcc and L1₂ phases present

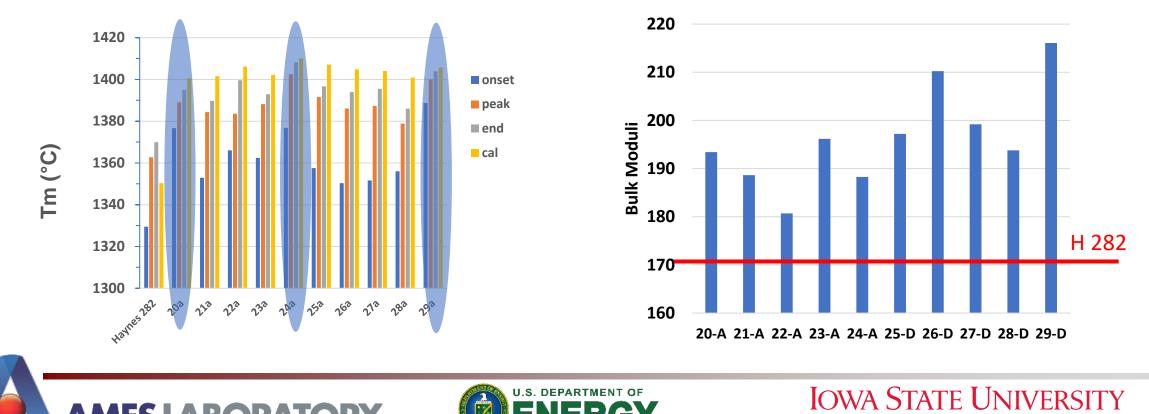
Nearly single phase fcc, 10-12A are not heat treated and show texturing along [200]

> IOWA STATE UNIVERSITY OF SCIENCE AND TECHNOLOGY

2nd generation results

- Target compositions w/ fcc matrix
- Investigate larger range of Ni, Co and Cr
- Include B, C, Fe and Si

100


110

Refined suite of compositions

2nd generation results

Identified a broad range of compositions with $T_m > 50^{\circ}C$ of Haynes 282 RT Moduli is effective criteria for further down selection.

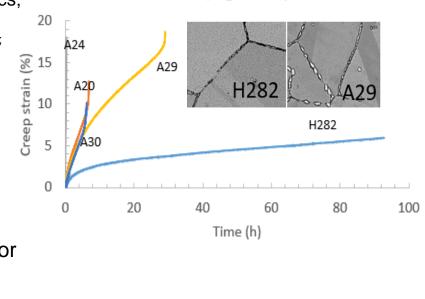
• Ideal for implementing advanced search algorithm and machine learning for optimization

Current Status of Project

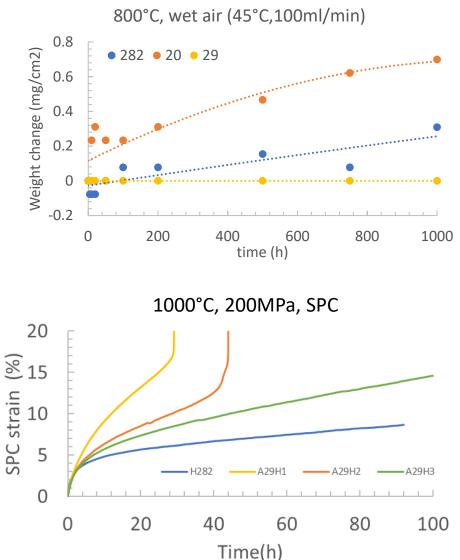
Baseline Characterization of Haynes-282

- Alloy sheet from Haynes (also provided additional data on oxidation and microstructure)
 - Initial oxidation characteristics;
 - Phase assemblages and T_{m;}
 - Elastic Moduli

Alloy Selection and Testing


Characterize alloys across prospective phase space

DSC, XRD, SEM, Ultrasound


Further evaluate 'best samples' for

Oxidation resistance

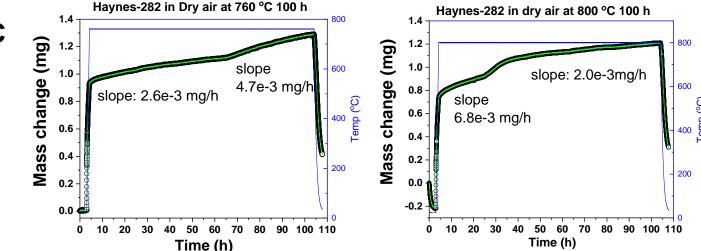
Mechanical properties/creep properties

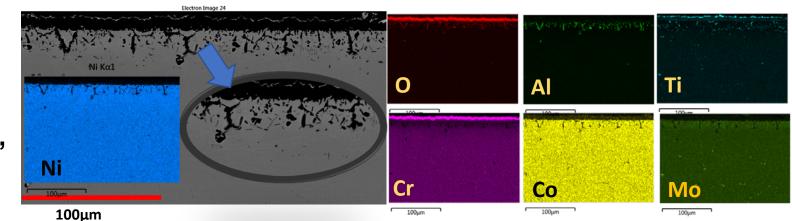
1000°C200MPa, Aged sample SPC

IOWA STATE UNIVERSITY

Baseline Characterization-Haynes 282

Oxidation (TGA)

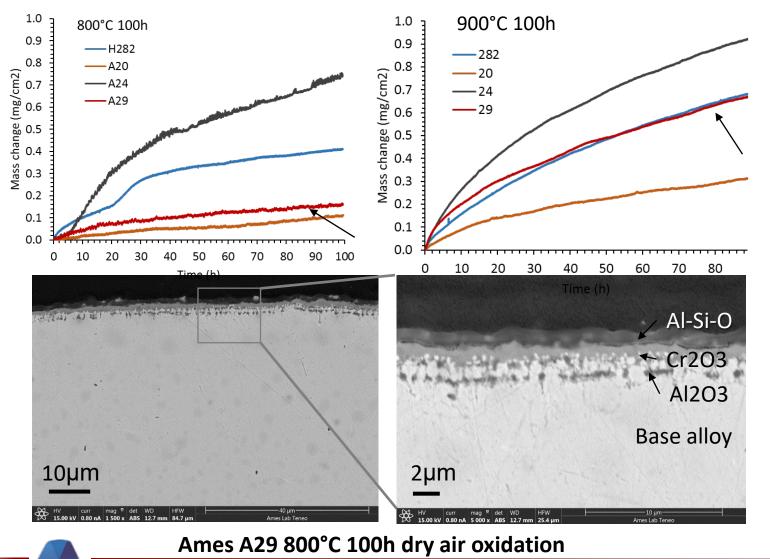

- Synthetic air, 760, 800, 900 & 1000 °C isothermal holds 20-100 hrs
- Two-step steady state oxidation
 - How does changes in alloy composition alter the transient and steady-state oxidation?


Cross-sectional SEM

- ~10 µm continuous oxide layer
 - Primarily Cr₂O₃, TiO₂ and NiO (XRD)
 - Oxide penetration (~20 μm), mostly Al₂O₃, No MoO₃

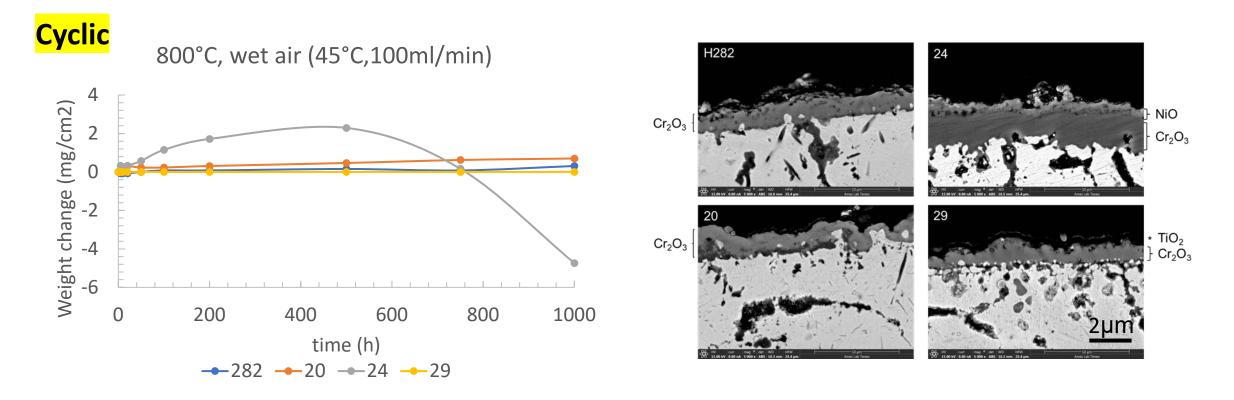
AMES LABORATO

Paper in preparation



Electron back-scatter image (top) and elemental EDS maps for Haynes-282 after oxidation at 760 °C/100h

Oxidation: Haynes 282 vs Ames alloys

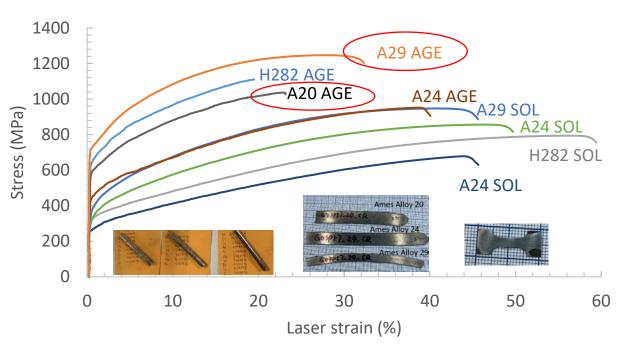


AMES LABORATO

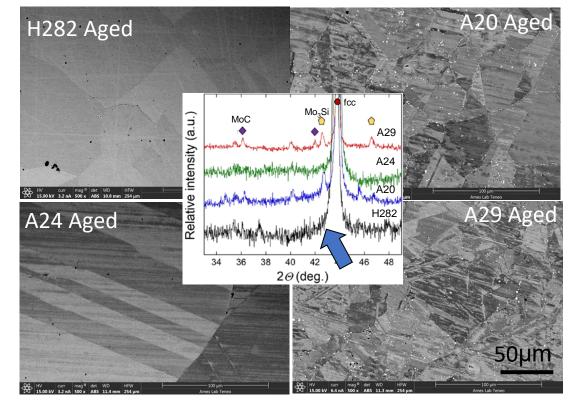
- Better oxidation resistance for Ames #20, 29 samples.
- Even with less Cr, Co, the scale on #20, 29 seems to be more protective at 800°C and 900°C.
- Ames 24 shows how small changes in Cr, Si can have profound changes in oxidation resistance.

14

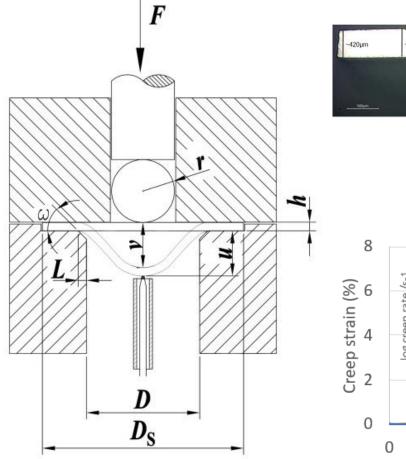
Oxidation: Haynes 282 vs Ames alloys, wet air

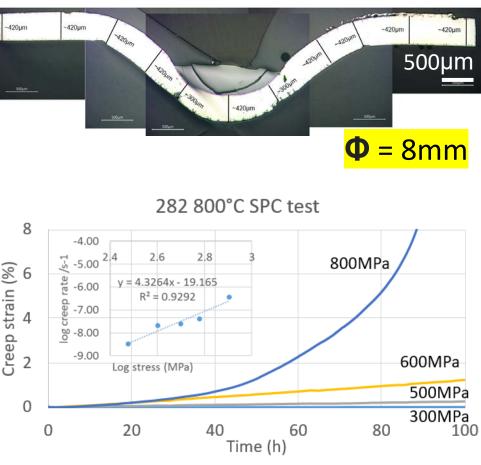

• Improved oxidation resistance for A29 at wet air condition. Its scale is thinner and has Mo(W)-O embedded in the top scale.



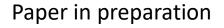

RT mechanical properties and fabricability

3x6mm Dog bone 10⁻³ tensile

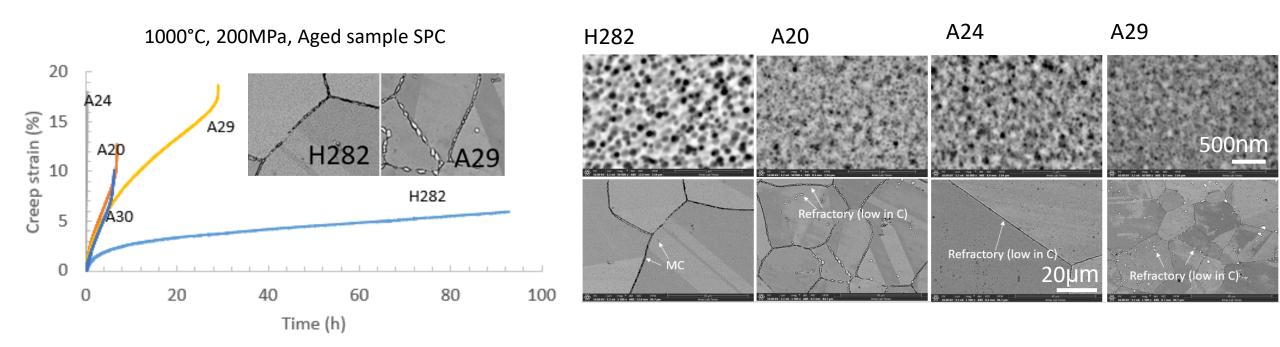

AMES LABORATORY



- Balanced strength and ductility for Ames #20, 29 samples.
- Precipitates of Mo₃Si present in #20 and #29 samples.
- Precipitates found inside the ductile dimples likely contributed to crack defections

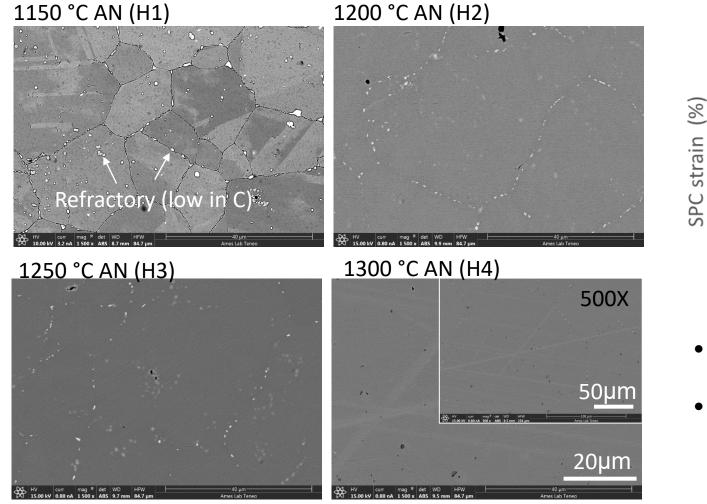


High temperature creep properties: Haynes 282


- Creep properties measured on benchmark Haynes 282 alloys using our newly set up HT small punch creep testers.
- Small punch creep testers allow rapid determination of creep properties of small sized sample.

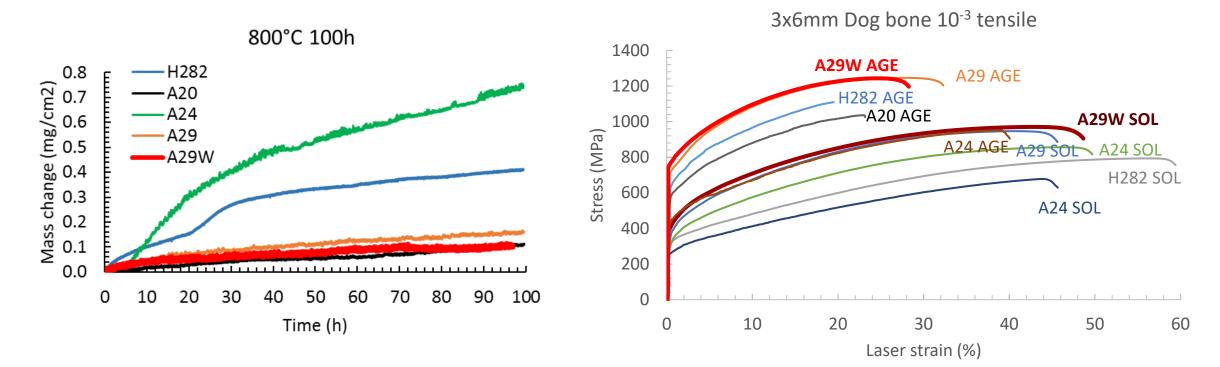
High temperature creep properties

- Creep properties shows strong relation with composition and microstructure effect presumably the primary refractory precipitates in the grain boundaries.
- Revised heat treatments are need for A20, A29 alloys for HT creep resistance.


Paper in preparation

Refined heat treatment on A29

1000°C, 200MPa, SPC 20 (§) 15 10 0 5 0 20 40 60 80 100 Time(h)


- Higher annealing temperature helps refine the grain boundary precipitates.
- With improved heat treatment, the creep properties of A29 is comparable to H282.

AMES LABORATO

Effect of W on A29

- Replacing the Mo by W results in:
 - Increased oxidation resistance at 800°C
 - increased strength with minimum reduction of ductility.
- Creep tests and heat treated on the new alloy is in progress.

Preparing Project for Next Steps

Market Benefits/Assessment

- Increase operating T of Haynes-282 by 50°C
 - Higher operating efficiencies
 - Longer lifetime
- Materials failures represent a significant fraction of power plant operating costs.
- Accurate and efficient modeling can reduce time to market.

Technology-to-Market Path

- Adoption: The optimized alloy's fabrication will fit into existing plants.
- Remaining technology challenges: Life-time assessment.
- New research: Develop methods to predict phase evolution/formations under operating conditions
- Haynes is providing materials and data.

Concluding Remarks

- Computationally efficient multi-elemental approach validated for Ni-based alloys will enable FECM to address these challenges:
 - Development of new alloy materials that have the potential to improve the performance and/or reduce the cost of existing fossil fuel technologies.
 - Development of materials for new energy systems and capabilities.
 - Development of alloys based on refractory metal elements to withstand the high temperatures and aggressive environments.
 - Better stability in wet combustion environment for H-based fuels.
- Current approach optimizes alloy composition based on phase stability and elastic moduli.
 - Model identified a broad range of promising compositions.
 - Developing suite of characterization tools to rapidly assess promising candidate compositions.

Special thanks to Haynes for supplying the samples and data, Olena Palasyuk, Prashant Singh, Arne Swanson, and Chaochao Pan for their work on the project and funding by FECM Crosscuts Program.

