FEAA152-Evaluating Ni-Based Alloys for A-USC Component Manufacturing and Use

Xiang (Frank) Chen, Timothy Lach, Ling Wang*, Peter Tortorelli, Michael Santella, Kinga Unocic, Edgar Lara-Curzio

1 Materials Science and Technology Division
2 ORNL Retiree Subcontractor
3 Center for Nanophase Materials Science
*currently affiliated with SLAC, work performed at ORNL

Oak Ridge National Laboratory

ORNL is managed by UT-Battelle, LLC for the US Department of Energy

FY22 FECM Spring R&D Project Review Meeting
Crosscutting (High Performance Materials) Virtual Session
May 11, 2022
Acknowledgement

• This work is sponsored by the Department of Energy Office of Fossil Energy and Carbon Management Award Number DE-FEAA152

• **NETL:** Sarah Nathan for the programmatic support

• **ORNL:** Wei Tang, Eric Manneschmidt, Tracie Lowe, Jeremy Moser, Shane Hawkins, Kelsey Hedrick, Doug Kyle, Doug Stringfield, DL Greise, and Daniel Franklin for their technical assistance

• **ComTest Consortium:** Robert Purgert (EIO), Horst Hack and Daniel Purdy (EPRI), Brian Fitzpatrick (Scot Forge), Ryan Buckland (GE), Jack deBarbadillo (Special Metals), Michael Maxeiner (McConway & Torley)
Background (1/3)

- Advanced Ultra-Supercritical (A-USC) power plants promise higher efficiency and lower emissions achieved by steam conditions up to 760°C (1400°F)/35 MPa (5 ksi), which mandates the use of Ni-based alloys.

- Two precipitation-strengthening Ni-based alloys, i.e., Haynes® 282® and Inconel® 740H®, are considered as leading candidate materials for A-USC applications.
Background (2/3)

- Ni-based alloys account for an important portfolio of the Fossil Energy and Carbon Management materials program

2001-2015
- Boiler materials for ultra supercritical coal power plants

2009-2015
- Materials for advanced ultrasupercritical steam turbines
 - IN740H pipe
 - 15" OD, 8" ID, 34.5 feet long
 - Viswanathan et al 2009
 - Haynes 282 triple-melt forged disk
 - Purgert et al 2015

2015-2018
- ComTest Phase 1

2019-
- ComTest Phase 2
 - 10-ton Haynes 282 nozzle carrier casting
 - Purgert and Hack 2019
Background (3/3)

- Characterization of Ni-based alloys provides
 - Data needed for materials qualification
 - Insights into potential manufacturability issues

Sand casting 7.7-ton Haynes 282, Purgert et al 2015

Cast Haynes 282 shrinkage defect, Wang et al., Materialia 15, 2021

ASME code case for Inconel 740H

Inquiry: May precipitation-hardenable Ni-25Cr-20Co alloy (UNS N07740) ASTM B983-16 seamless alloy pipe and tube, ASTM B1007-17 welded tube, and ASTM B637-18 bars, forgings, and forging stock; wrought plate, sheet, strip, and fittings material conforming to the chemical requirements shown in Table 1, the mechanical properties listed in Table 2, and otherwise conforming to the applicable requirements in the specifications listed in Table 3 and in this Case be used in welded and nonwelded construction under Section I rules?

ASME code case for Haynes 282

Inquiry: Under what conditions may Ni-Cr-Co-Mo-Ti Precipitation Hardened Alloy UNS N07208 wrought bar, fittings, forgings, forgings stock, plate, sheet, strip, seamless pipe and tube, and welded pipe and tube be used in welded and nonwelded construction under the rules of Section I and Section VIII, Division 1?
Objective: This research provides a critical evaluation of advanced Ni-based alloys supporting the manufacturing and use of components under advanced ultra-supercritical (A-USC) steam conditions.

- Haynes 282 sand casting
- Haynes 282 forged disk
- Cast Haynes 282 GTAW
- Creep modeling
- Inconel 740H SMAW
- ComTest Phase 2 materials
Milestone Status

<table>
<thead>
<tr>
<th>Milestones</th>
<th>2019</th>
<th>2020</th>
<th>2021</th>
<th>2022</th>
</tr>
</thead>
<tbody>
<tr>
<td>Award</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M1: Initiate creep testing for the cast Haynes 282 cross-weld and</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>wrought Inconel 740H to cast Haynes 282 dissimilar weld</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M2: Determine ComTest Phase 2 project components to be</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>characterized in this FWP</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M3: Complete casting defect identification and characterization for</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Haynes 282 half valve body casting</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M4: Start thermal aging treatment on cast Haynes 282 cross-weld and</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>wrought Inconel 740H to cast Haynes 282 dissimilar weld</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M5: Start mechanical testing and microstructure characterization of</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>specimens made from near to full scale components from the ComTest</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phase 2 project</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M6: Start microstructural characterization on specimens from</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>previous FEAA125 project</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M7: Complete microstructural characterization for Haynes 282 half</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>valve body casting</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M8: Complete microstructural characterization on specimens from</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>previous FEAA125 project</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M9: Complete thermal aging treatment on cast Haynes 282 cross-weld and</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>wrought Inconel 740H to cast Haynes 282 dissimilar weld for up to 8,000h</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M10: Complete tensile, toughness, and microstructure</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>characterization of cast Haynes 282 cross-weld and wrought Inconel</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>740H to cast Haynes 282 dissimilar weld after thermal aging</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M11: Complete 10,000h creep rupture testing for the cast Haynes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>282 cross-weld and wrought Inconel 740H to cast Haynes 282 dissimilar</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>weld</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Completed milestones

Ongoing milestones

Today
Creep Rupture Lifetime Prediction for Wrought Haynes 282 Alloy

Michael L. Santella, Peter F. Tortorelli, Mark Render, Bruce Pint, Hong Wang, Vito Cedro III, and Xiang Frank Chen. "Effects of applied stress and grain size on creep-rupture lifetime prediction for Haynes 282 alloy." Materials Science and Engineering A 838(2022), 142785
Background

• DOE-FECM FEAA117 funded ORNL in generating the experimental basis for the development of ASME Boiler and Pressure Vessel (BPVC) code cases for wrought Haynes 282 in collaboration with Haynes International

• Code case #3024 led by Haynes International was approved and published in 2021 ASME BPVC Code Cases Supplement 2

• The study explores the efficacy of creep lifetime prediction for Haynes 282 based on either the Wilshire model or the Larson-Miller Parameter (LMP) using standard creep-rupture data
Materials and Methods

<table>
<thead>
<tr>
<th>Heat No.</th>
<th>Cr</th>
<th>Co</th>
<th>Mo</th>
<th>Al</th>
<th>Ti</th>
<th>W</th>
</tr>
</thead>
<tbody>
<tr>
<td>2082-2-8389</td>
<td>19.4</td>
<td>10.2</td>
<td>8.5</td>
<td>1.55</td>
<td>2.20</td>
<td>0.05</td>
</tr>
<tr>
<td>2082-2-8391</td>
<td>19.5</td>
<td>10.3</td>
<td>8.8</td>
<td>1.39</td>
<td>2.12</td>
<td><0.01</td>
</tr>
<tr>
<td>2082-3-8354</td>
<td>19.5</td>
<td>10.4</td>
<td>8.6</td>
<td>1.46</td>
<td>2.22</td>
<td><0.01</td>
</tr>
</tbody>
</table>

All three heats: Nb: <0.1, Ta: <0.01, Cu: <0.01, S: <0.01

- 3 heats of wrought Haynes 282 after 1 step aging; one heat has smaller average grain size than the other two heats.

- Two creep models were evaluated:
 - Wilshire model: \(\frac{\sigma_a}{\sigma_{TS}} = \exp \left\{ -k \left[t_f \exp \left(-\frac{Q_c}{RT} \right) \right]^u \right\} \)
 - Larson Miller parameter: \(LMP = B_0 + \sum B_n \log(\sigma_a)^n = \)
Three Heats Wrought Haynes 282 Tensile and Creep Properties

- Below 800°C, heat 8389 with a smaller grain size showed higher yield strength (YS) and tensile strength (TS) than the two other heats (8354 and 8391) while above 800°C, all three heats showed similar tensile strength.

- Below 760°C, all three heats showed similar creep life while above 760°C, heat 8389 showed shorter creep life compared with the two other heats (8354 and 8391).
The Need for Split Region Analysis

- Both Wilshire and LMP models yielded poor prediction on creep lives when applied stresses were high.
- In those tests, the applied stress σ_a was higher than the materials proportional limit σ_{PL} at the test temperature.
- We proposed two different creep mechanisms for $\sigma_a < \sigma_{PL}$ and $\sigma_a \geq \sigma_{PL}$ and there is a need to perform split region analysis.

https://www.instron.com/
Split Region Analysis

- Split region analysis based on σ_{PL} improved the creep life prediction accuracy for both Wilshire (left) and LMP (right) models for the entire creep stress region.

- The fitted activation energy in the Wilshire model indicated plasticity-driven ($\sigma_a \geq \sigma_{PL}$) vs. diffusion-driven ($\sigma_a < \sigma_{PL}$) creep mechanisms.
Both *Wilshire* (left) and *LMP* (right) models developed with ORNL 1-step aging creep data yield reasonable prediction of literature creep life data for wrought Haynes 282 despite wide varieties in material heats/compositions, processing, and aging heat treatment conditions.
Prediction of Creep Strength for 100kh Creep Life

- Slightly more conservative prediction of Wilshire model than LMP
- Both models indicate that at 760°C, Haynes 282 can meet the requirement of 100 MPa creep strength for 100kh creep life
Evaluation of Tensile and Creep Properties for Haynes 282 sand casting

Background

Haynes 282 sand casting. Letters indicating sampling locations
[Purgert et al., MATERIALS FOR ADVANCED ULTRASUPERCritical STEAM TURBINES, Final Technical Report, 2015]

• Haynes 282 sand casting was manufactured in the A-USC steam turbine project with poured weight of 7.7 tons (17,000 lbs).
• After casting, the material was homogenized and age-hardening heat treated (Haynes 282 2-step aging: 1010°C/2 hours + 788°C/8 hours)
Haynes 282 Sand Casting: initial microstructures

- Heterogeneous microstructures (cast defects, grain size, γ' size) were observed in the Haynes 282 sand casting

Shrinkage porosity indicated by red color after dye penetration

Optical image

SEM-SE mode

Matrix γ' precipitates

TEM-CDF

STEM-EDS

γ' bimodal distribution
Haynes 282 Sand Casting: tensile properties

- The cast material showed lower tensile strength and ductility in comparison with the wrought materials.

Slip bands were dominant deformation features at room temperature.
Clustered carbides behave as obstacles to the dislocation movement.
Fine-scale γ' precipitates were sheared by the slip bands.
Haynes 282 Sand Casting Post Tensile Test Microstructure: elevated temperature

- Similar microstructures were observed after tensile testing at 704-816°C
- Dislocation network was dominant at elevated temperatures, indicating deformation was quite uniform
- γ′ precipitates, including both fine-scale and coarse-scale, served as obstacles to the dislocation migration and show internal stacking faults after interaction with dislocations

Microstructure of a sand cast Haynes 282 specimen after tensile test at 760°C
Haynes 282 Sand Casting: creep properties and mechanisms

- The cast material showed similar Larson-Miller Parameter behavior in comparison with the wrought materials.
- The dominant creep mechanisms over the temperatures of 704-788°C were found to be diffusional creep.

\[T = \text{creep testing temperature in kelvin} \]
\[C = \text{material constant usually expressed as 20} \]
\[t_r = \text{creep rupture life in hours} \]

\[\dot{\varepsilon}_m = A(\sigma_a - \sigma_{th})^n \exp \left(\frac{-Q_c}{RT}\right) \]

- Effective stress: \(\sigma_a - \sigma_{th} \)
- Threshold stress \(\sigma_{th} = 340 \text{ MPa (704°C)} \)
 218 MPa (760°C)
 182 MPa (788°C)
- \(n = \sim 1 \) (diffusional creep)

Selected creep results from 704 to 788°C. (a) stress vs. rupture, (b) minimum creep rate vs. applied stress
Haynes 282 Sand Casting: creep deformation microstructures

- Dislocation network was dominant at elevated temperatures, indicating deformation was quite uniform.
- $M_{23}C_6$ and γ′ precipitates are comparably stable in size after creep tests over the temperature range of 704-788°C.

Creep condition: 760°C/241 MPa for 3,125 hrs

STEM-BF,-DF4,-EDS
ComTest Phase 2 Haynes 282 Nozzle Carrier Casting Heat Treatment study (ongoing)
• ComTest Phase 2 Project manufactured a variety of large-scale components from Inconel 740H or Haynes 282

• Several components were shipped to ORNL which included a Haynes 282 nozzle carrier casting with a weight of 9.2 tons (20,260 lbs)
The standard double aging treatment for Haynes 282 is time-consuming and costly
- ASME code case for wrought Haynes 282 only requires one-step aging and if a similar aging treatment can be applied to the cast material to produce similar structures and properties, it would be highly beneficial
- This study is set to determine the effect of heat treatment on microstructure (specifically precipitate structure) and mechanical properties
- Compare these treatments with that of one-step aging treatment of wrought Haynes 282 previously studied (Unocic et al., https://doi.org/10.1016/j.scriptamat.2018.11.045)
Haynes 282 Nozzle Carrier Casting: as-received microstructures

- Large mm+ size grain structure combined with intragranular and grain boundary carbides, occasional large grain boundary oxide inclusions, and Ni$_3$(Al,Ti) γ' precipitates

- Large heterogeneous oxide inclusions
- Al-oxide nearest periphery and Cr-oxide at center
- No γ' precipitates in vicinity of oxide

γ' precipitate gradient near (Ti,Mo)C carbides with these smaller particles appearing to have slightly reduced Ti compared to the larger ones
- ~50nm from carbide denuded zone with no precipitates
- ~200-300nm from carbide with precipitates <~30nm
- ~0.5-1μm from carbide with precipitates smaller than intragranular precipitates (~100-130nm)

Grain boundary carbides and gradient of γ' precipitates near carbides but less so at clean boundary
Haynes 282 Nozzle Carrier Casting: solution anneal + one-step aging

- Large size grain structure combined with intragranular and grain boundary carbides, and γ’ precipitates

- Grain boundaries carbides enriched with Cr and Mo*
 *no Ti-rich carbides observed does not prove they aren’t there

- No gradient in size of γ’ near boundary

- Smaller γ’ precipitates (~20-60nm) compared with the as-received casting

γ’ near GB precipitate in the as-received Haynes 282 casting
This research provides a critical evaluation of advanced Ni-based alloys supporting the manufacturing and use of components under advanced ultra-supercritical (A-USC) steam conditions.

Haynes 282 large sand casting
- Tensile
- Creep
- Low cycle fatigue and Creep-fatigue

Haynes 282 casting cross-weld with 282 filler metal
- Creep
- Thermal aging

Wrought Haynes 282 and Haynes 282 triple-melt forged disk
- Creep
- Environmental high cycle fatigue

Publications under this project
2. Santella et al., Welding in the World vol. 65, 2021
3. Wang et al., Materialia vol. 15, 2021
4. Render et al., Met Trans. A. vol 52, 2021
6. Unocic et al., JOM vol 72, 2020
7. Chen et al., Joint EPRI-123HiMAT International Conference on Advances in High Temperature Materials, 2019

IN 740H shielded metal arc welding with Thermanit 263 filler metal
- Creep
- Microstructure characterization

Haynes 282 casting to IN 740H plate dissimilar weld
- Metallography & microhardness
- Tensile
- Creep
- Thermal aging

ComTest Phase 2 components
- Nozzle carrier casting