Modularization of Ceramic Hollow Fiber Membrane Technology for Air Separation

DE-FE0031473

PI: Xingjian (Chris) Xue
University of South Carolina
Columbia SC 29208
Email: Xue@cec.sc.edu
Objective:
Develop membrane stack and module for air separation and oxygen production using ceramic hollow fiber membrane technology

Strategic alignment of project to Fossil Energy objectives

• **Cost of Energy and Carbon Dioxide (CO2) Capture**
 • Using pure oxygen instead of air for combustion of power plant produces CO2, no need to separate nitrogen from downstream;
 • Can reduce the cost and simplify the system for CO2 capture.

• **Power Plant Efficiency Improvements**
 • Pure oxygen instead of air increases efficiency of power plant;
 • Cost-effective, reliable technologies to improve the efficiency of coal-fired power plants.
Fabrication of Membranes
Fabrication of Membranes
Fabrication of Membranes
Gas Diffusion Performance of Substrate

- Open microchannels
- Close microchannel pores
Microstructure of Membrane Device
EDS Analysis of Membrane

Fe

Sr

Zn

La

Co
Oxygen Permeation Performance

a) Oxygen permeation performance as a function of sweep gas flow rate at different temperatures (950°C, 900°C, 850°C, 800°C).

b) Logarithmic plot of oxygen permeation rate (J_o) vs. reciprocal temperature ($1000/T$) for various sweep gas flow rates (80 mL·cm⁻²·min⁻¹, 70 mL·cm⁻²·min⁻¹, 60 mL·cm⁻²·min⁻¹, 50 mL·cm⁻²·min⁻¹, 40 mL·cm⁻²·min⁻¹, 30 mL·cm⁻²·min⁻¹, 20 mL·cm⁻²·min⁻¹, 10 mL·cm⁻²·min⁻¹).

c) Activation energy as a function of sweep gas flow rate.

d) Oxygen permeation rate (J_o) over time for a specific sweep gas flow rate.
Characterization of Membrane
Oxygen Permeation Performance

(a) Oxygen permeation flux (J_0) as a function of sweep gas flow rate at different temperatures.

(b) Logarithm of oxygen permeation flux ($\log(J_0)$) as a function of $1000/T$ (inverse temperature) for different sweep gas flow rates.

(c) Activation energy (E_a) as a function of sweep gas flow rate.

(d) Comparison of activation energy for samples with and without LSCF catalytic layer as a function of sweep gas flow rate.
Long-Term Stability of Membrane

- long-term (~400 h) test
- 20 thermal cycles between 900 and 600 °C.
Characterization of membrane after stability test
Membrane with Different Surface Catalyst
Performance Comparison

<table>
<thead>
<tr>
<th>Reference</th>
<th>Surface catalysts</th>
<th>Dense layer thickness (μm)</th>
<th>Sweep gas</th>
<th>(J_{O_2}) (mL/cm(^2)/min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>This work</td>
<td>PrBaCo((Fe_{0.6}Zr_{0.2}Y_{0.2})O_{5+\delta})</td>
<td>20</td>
<td>Ar</td>
<td>1.76</td>
</tr>
<tr>
<td>[1]</td>
<td>HCl</td>
<td>40</td>
<td>He</td>
<td>0.6</td>
</tr>
<tr>
<td>[2]</td>
<td>LSCF</td>
<td>40</td>
<td>He</td>
<td>1.5</td>
</tr>
<tr>
<td>[3]</td>
<td>None</td>
<td>88</td>
<td>He</td>
<td>1.4</td>
</tr>
<tr>
<td>[4]</td>
<td>Pt</td>
<td>100</td>
<td>Ar</td>
<td>1.1</td>
</tr>
<tr>
<td>[5]</td>
<td>None</td>
<td>300</td>
<td>He</td>
<td>0.3</td>
</tr>
<tr>
<td>[6]</td>
<td>Ba({0.5})Sr({0.5})Co({0.9})Nb({0.1})O(_{3-\delta})</td>
<td>530</td>
<td>He</td>
<td>0.7</td>
</tr>
<tr>
<td>[7]</td>
<td>LSCF</td>
<td>710</td>
<td>He</td>
<td>1.0</td>
</tr>
<tr>
<td>[8]</td>
<td>((La_{0.5}Sr_{0.5})2COO{4+\delta})</td>
<td>750</td>
<td>He</td>
<td>0.9</td>
</tr>
</tbody>
</table>

- Thin film separation layers do improve oxygen permeation flux
Accelerated Long-term Stability

- long-term (~ 550 h) test
- 46 thermal cycles between 850 and 600 °C.
Characterization after Long-term Stability Test
Membrane Stack Test

- Proof of concept;
Membrane Stack Test

- Performance after long-term stability test;
- New membrane stack is being fabricated;
- Further stack test will be conducted;
- Accelerated long term stability test is still running.
Multiphysics Modeling of Membrane
Multiphysics Modeling of Membrane
Acknowledgments

Andrew C. O’Connell
National Energy Technology Laboratory
U.S. Department of Energy

This material is based upon work supported by the Department of Energy Award Number DE-FE0031473.