

Modularization of Ceramic Hollow Fiber Membrane Technology for Air Separation

DE-FE0031473

PI: Xingjian (Chris) Xue University of South Carolina Columbia SC 29208 Email: <u>Xue@cec.sc.edu</u>

Objective:

Develop membrane stack and module for air separation and oxygen production using ceramic hollow fiber membrane technology

Strategic alignment of project to Fossil Energy objectives

- Cost of Energy and Carbon Dioxide (CO2) Capture
 - Using pure oxygen instead of air for combustion of power plant produces CO2, no need to separate nitrogen from down stream;
 - Can reduce the cost and simplify the system for CO2 capture.
- Power Plant Efficiency Improvements
 - Pure oxygen instead of air increases efficiency of power plant;
 - Cost-effective, reliable technologies to improve the efficiency of coal-fired power plants.

Fabrication of Membranes

Fabrication of Membranes

Fabrication of Membranes

Characterization of Membranes

Gas Diffusion Performance of Substrate

Microstructure of Membrane Device

EDS Analysis of Membrane

Oxygen Permeation Performance

Characterization of Membrane

Oxygen Permeation Performance

Long-Term Stability of Membrane

Membrane with Different Surface Catalyst

Oxygen Permeation Performance

Sweep Gas Flow Rate (mL min⁻¹)

Performance Comparison

Reference	Surface catalysts	Dense layer thickness (µm)	Sweep gas	J ₀₂ (mL/cm²/min)
This work	$PrBaCo(Fe_{0.6}Zr_{0.2}Y_{0.2})O_{5+\delta}$	20	Ar	1.76
[1]	HCI	40	Не	0.6
[2]	LSCF	40	Не	1.5
[3]	None	88	Не	1.4
[4]	Pt	100	Ar	1.1
[5]	None	300	Не	0.3
[6]	$Ba_{0.5}Sr_{0.5}Co_{0.9}Nb_{0.1}O_{3-\delta}$	530	Не	0.7
[7]	LSCF	710	Не	1.0
[8]	$(La_{0.5}Sr_{0.5})_{2}CoO_{4+\delta}$	750	Не	0.9

• Thin film separation layers do improve oxygen permeation flux

Accelerated Long-term Stability

Characterization after Long-term Stability Test

Membrane Stack Test

• Proof of concept;

Membrane Stack Test

Sweep gas flow rate (mL·min⁻¹)

- Performance after long-term stability test;
- New membrane stack is being fabricated;
- Further stack test will be conducted;
- Accelerated long term stability test is still running.

Multiphysics Modeling of Membrane

Acknowledgments

Andrew C. O'Connell National Energy Technology Laboratory U.S. Department of Energy

This material is based upon work supported by the Department of Energy Award Number DE-FE0031473.