



## High Selectivity and Throughput Carbon Molecular Sieve Hollow Fiber Membrane-Based Modular Air Separation Unit for Producing High Purity O<sub>2</sub>

#### FE-1049-18-FY19

#### Rajinder Singh Materials Physics and Applications Division Los Alamos National Laboratory

Project Review Meeting DOE – Fossil Energy/NETL May 2, 2022





# **Project Overview**

Section 4 Award Name:

- ♦ Award Number:
- **Solution** Series Serie
- Scherk Project Manager:
- **Solution** Solution S



High Selectivity and Throughput Carbon Molecular Sieve Hollow Fiber Membrane-Based Modular Air Separation Unit for Producing High Purity  $O_2$ FE-1049-18-FY19 BP3: 08/2021 – 07/2022 Evelyn Lopez Development of high flux polybenzimidazolederived carbon molecular sieve hollow fiber membranes having  $O_2/N_2$  selectivity > 15 for high purity O<sub>2</sub> production to meet the needs of a modular 1-5 MWe gasification system





## Air Separations

- Scryogenic distillation is *the* industrially preferred technique for large-scale, high purity O<sub>2</sub> production
  - Cryogenic technology is energy inefficient at small scale
  - Scale dependent estimated specific energy consumption 23 to 63 kJ/mol
- Solution Membrane-based air separation processes have advantages over competing Tailorable output stream conditions technologies
  - > Inherent modularity & dramatically reduced footprint





- (T&P) to match downstream process
- Improved energy economics





Ref: Air Products Inc. & Air Liquide Inc

Ref: Meriläinen et al. / Applied Energy, 94 (2012) 285-294



## Membrane Development Approach

- Solution Polybenzimidazole (PBI)-derived carbon molecular sieve membranes for high  $O_2/N_2$  selectivity
  - Tightly packed PBI molecular structure resulting from H-bonding and π-π stacking imparts molecular sieving character
  - Base polymer (*m*-PBI) has high selectivity for gas pairs (e.g.  $H_2/N_2 \ge 100$ ;  $O_2/N_2 = 2$ )
  - Further enhancement of molecular sieving properties via controlled pyrolysis proposed to create ultra-micropores
  - PBI pyrolysis preliminary work: O<sub>2</sub>/N<sub>2</sub> selectivity increased from 2 to 30 [Ref: S.S. Hosseini et al. / Separation and Purification Technology 122 (2014) 278-289]





## **Polymer Derived CMS Membranes**

### **Solution** Solution S





## **Tailoring Separation Performance: Pyrolysis Temperature**



| Sampla  | Ideal Separation Pe           | Estimated O <sub>2</sub> |                       |
|---------|-------------------------------|--------------------------|-----------------------|
| Sample  | O <sub>2</sub> permeance, GPU | $O_2/N_2$                | permeability [Barrer] |
| PBI     | 0.204                         | 1.02                     | 0.06                  |
| CMS-580 | 0.303                         | 8.44                     | 8.48                  |
| CMS-650 | 3.964                         | 8.47                     | 99                    |
| CMS-750 | 0.782                         | 13.7                     | 16.4                  |
| CMS-850 | 42.3                          | 0.90                     | 550                   |



Seong & Singh et.al., Carbon 192, 71-83, 2022



## **Achieving High Permeance**

#### Schallenge: Mitigate HFM porous support structure collapse during pyrolysis



LOS Alamos



# **O**<sub>2</sub>/N<sub>2</sub> Performance Summary



## **Tailoring Separation Performance: Pyrolysis Atmosphere**

- ✤ Pyrolysis under inert flowing gas is more practical for industrial deployment
  - Inert gas pyrolysis produced PBI-CMS HFMs having higher O<sub>2</sub> permeance with similar selectivity as compared to vacuum pyrolysis

|            | Pyrolysis                        |     | Pe             | rmeance, G      | 9  | Selectivity |                   |           |                    |                                 |  |  |  |  |
|------------|----------------------------------|-----|----------------|-----------------|----|-------------|-------------------|-----------|--------------------|---------------------------------|--|--|--|--|
| Sample     | Atmosphere                       | He  | 0 <sub>2</sub> | CO <sub>2</sub> | Ar | $N_2$       | He/N <sub>2</sub> | $O_2/N_2$ | O <sub>2</sub> /Ar | CO <sub>2</sub> /N <sub>2</sub> |  |  |  |  |
| Membrane 1 | Vacuum                           | 179 | 87             |                 | 14 | 13          | 14                | 6.7       | 6.2                |                                 |  |  |  |  |
| Membrane 2 | Inert (N <sub>2</sub> ) Gas Flow | 517 | 159            | 835             | 27 | 23          | 22                | 6.9       | 5.9                | 36                              |  |  |  |  |
| Membrane 3 | Inert $(N_2)$ Gas Flow           | 648 | 265            | 1350            | 41 | 40          | 16                | 6.7       | 6.5                | 34                              |  |  |  |  |



 CMS-PBI HFM fabricated under vacuum had thicker selective layer as compared to membrane fabricated in inert flowing gas resulting in higher O<sub>2</sub> permeance





### **PBI-CMS HFM: Pressure Independent Separation Performance**

**Solution Pressure independent separation performance indicate defect-free HFMs** 





## **Techno-economic Analysis – Design Basis**



| Membrane module                                      | Input values |
|------------------------------------------------------|--------------|
| HF Diameter, µm                                      | 300-500      |
| Wall Thickness, µm                                   | 30           |
| Selective Layer Thickness, µm                        | 0.1 to 1.0   |
| O <sub>2</sub> permeance, GPU                        | 100-300      |
| $O_2/N_2$ selectivity of the membrane                | 10-30        |
| Module Diameter, m                                   | 0.25         |
| Module Length, m                                     | 0.4-1        |
| Surface Area Density, m <sup>2</sup> /m <sup>3</sup> | 3000         |
| Membrane cost, \$/m <sup>2</sup>                     | 50-125       |

| Process Parameters                  | Input values |
|-------------------------------------|--------------|
| O <sub>2</sub> Production Rate, TPD | 15           |
| Hours of operation per year         | 7884         |
| Pressure ratio                      | 10           |
| Electricity cost, \$/MWh            | 80           |
| Membrane installation factor        | 0.3          |





### **Permeate Evacuation Process Scheme**

#### $\checkmark$ Preliminary TEA: 2-stage process for > 90% O<sub>2</sub> production



## **Feed Compression Process Scheme**

#### ✤ Preliminary TEA: 3-stage process for > 90% O<sub>2</sub> production



# Project Milestones (BP – 3)

 $\langle \rangle$ 

| BP       | ID | Task # | Description                                                                                                                                                                                                                                                      | Planned<br>Completion Date | Status      |
|----------|----|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-------------|
| 3        | R1 | 1.0    | Perform a stage-gate review to determine the progress and potential to reach the project goals and achieve competitive energy consumption.                                                                                                                       | 07/31/2022                 | in-progress |
| 3        | R2 | 2.0    | Report a plan to DOE to reach a 1-micron thick<br>selective layer and demonstrate that the permeance<br>can reach 100 gas permeation units (GPU) while<br>maintaining selectivity of at least 15.                                                                | 07/31/2022                 | in-progress |
| 3        | R3 | 4.0    | Determine goals for cost, permeability, and selectivity<br>that can be reached by looking at what can be<br>practically achieved for the material and process. Use<br>these practical goals to evaluate the system<br>performance in terms of energy and purity. | 03/31/2022                 | Complete    |
| 3        | R4 | 2.0    | Set up a laboratory system with controlled pyrolysis<br>conditions under flowing gas, which could be a<br>practical way of simulating industrial conditions.                                                                                                     | 03/31/2022                 | Complete    |
| 3        | R6 | 3.0    | Perform argon testing to determine the maximum possible O <sub>2</sub> purity.                                                                                                                                                                                   | 03/31/2022                 | Complete    |
| LOS Alam |    |        |                                                                                                                                                                                                                                                                  |                            |             |

## Project Timeline (BP – 3)

|                                                                                              |               |             |                        | В             | BP1 |  |                     |    |          | BF | 22 |            |                        |    |            | BP | 3                     |          |   | BI | P4                |  |    |    | BP5 |  |  |
|----------------------------------------------------------------------------------------------|---------------|-------------|------------------------|---------------|-----|--|---------------------|----|----------|----|----|------------|------------------------|----|------------|----|-----------------------|----------|---|----|-------------------|--|----|----|-----|--|--|
|                                                                                              |               |             | 12/15/18 -<br>11/30/19 |               |     |  | 12/01/19 - 07/31/21 |    |          |    |    |            | 08/01/21 -<br>07/31/22 |    |            |    | 08/01/22-<br>07/31/23 |          |   |    | 08/01/23-07/31/24 |  |    |    |     |  |  |
|                                                                                              | Start<br>Date | End<br>Date | Q1                     | Q1 Q2 Q3 Q4 ( |     |  | Q1                  | Q2 | Q2 Q3 Q4 |    | Q1 | Q1 Q2 Q3 Q |                        | Q4 | 4 Q1 Q2 Q3 |    | 3 Q                   | Q4 Q1 Q2 |   | Q3 | Q4 Q1             |  | Q2 | Q3 | Q4  |  |  |
| Task 1.0 - Project Management & Planning                                                     | 12/15/18      | 09/30/23    |                        |               |     |  |                     |    |          |    |    |            |                        |    |            |    |                       | R        |   |    |                   |  |    |    |     |  |  |
| Task 2.0 - PBI- CMS Hollow Fiber Membrane<br>Preparation, Optimization, and Characterization | 12/15/18      | 09/30/22    |                        |               |     |  |                     |    |          |    |    |            |                        |    |            |    | R4                    | R        | 2 |    |                   |  |    |    |     |  |  |
| Subtask 2.1 - Optimize PBI pyrolysis conditions                                              | 12/15/18      | 03/30/20    |                        |               |     |  |                     |    |          |    |    |            |                        |    |            |    |                       |          |   |    |                   |  |    |    |     |  |  |
| Subtask 2.2 - CMS hollow fiber membrane<br>preparation                                       | 06/01/18      | 09/30/22    |                        |               |     |  |                     |    |          |    |    |            |                        |    |            |    |                       |          |   |    |                   |  |    |    |     |  |  |
| Task 3.0 - Membrane Evaluation and Process<br>Parametric Studies                             | 04/01/19      | 09/30/23    |                        |               |     |  |                     |    |          |    |    |            |                        |    |            |    | R6                    |          |   |    |                   |  |    |    |     |  |  |
| Task 4.0 - Process Design and Techno-economic<br>Analysis                                    | 12/15/18      | 09/30/22    |                        |               |     |  |                     |    |          |    |    |            |                        |    |            |    | R3                    |          |   |    |                   |  |    |    |     |  |  |
| Task 5.0 - Modular System Design                                                             | 10/01/22      | 09/30/23    |                        |               |     |  |                     |    |          |    |    |            |                        |    |            |    |                       |          |   |    |                   |  |    |    |     |  |  |



## **PBI-CMS HFM Performance Improvement**

Sol (R1 & R2): Report a plan to fabricate asymmetric PBI-CMS HFMs with 1  $\mu$ m selective layer to achieve O<sub>2</sub> permeance of 100 GPU and O<sub>2</sub>/N<sub>2</sub> selectivity of 15

 $\frac{\text{Permeance}}{100 \text{ GPU}} = \frac{150 \text{ Barrer}}{1.5 \mu \text{m}}$ 

- Method developed to mitigate asymmetric morphology collapse during pyrolysis
  - Achieved PBI-CMS HFMs with selective layer thickness 1-2 μm
  - > Demonstrated  $O_2$  permeance > 200 GPU and  $O_2/N_2$  selectivity of ca. 7



- - Understand the influence of fabrication process parameters and develop performancefabrication parameter-property correlations





### **Membrane Evaluation Under Realistic Conditions**

✤ Perform single and multi-fiber testing under realistic conditions including in presence of trace components (e.g water vapor, CO<sub>2</sub>)









Lab-scale multi-scale membrane module





## **Modular ASU Design and Prototype Development**

- **b** Design Plan (FY23): Development of process design package
  - > O<sub>2</sub> (90 to 95%) for a modular 1-5 MWe gasification system
  - > Engage with membrane manufacturer for module design specifications
  - > OEM configuration and vendor quotations for components e.g. blower, vacuum pumps
  - Detailed TEA
- ✤ Lab-scale prototype (FY23)
  - Long term laboratory validation
- ✤ Future development: Pilot Testing (FY23+)
  - > 1-10 kg/day O<sub>2</sub> system design and construction



50 to 200 fibers in 4" module



1000-2000 fibers in 12" x 1" module: Example module



With industry collaboration



## Acknowledgements

### **b** DOE – NETL Gasification Program

- > Evelyn Lopez
- David Lyons

### **b** Los Alamos National Laboratory

- JongGeun Seong (PD Materials)
- Harshul V. Thakkar (PD Evaluations)
- Prashant Sharan (PD TEA)
- > Jeremy C. Lewis
- John A. Matteson
- Kathryn A. Berchtold

#### Disclaimer

The submitted materials have been authored by an employee or employees of Triad National Security, LLC (Triad) under contract with the U.S. Department of Energy/National Nuclear Security Administration (DOE/NNSA). Accordingly, the U.S. Government retains an irrevocable, nonexclusive, royalty-free license to publish, translate, reproduce, use, or dispose of the published form of the work and to authorize others to do the same for U.S. Government This report was prepared as an account of work purposes. sponsored by an agency of the U.S. Government. Neither Triad National Security, LLC, the U.S. Government nor any agency thereof, nor any of their employees make any warranty, express or implied, or assume any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represent that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by Triad National Security, LLC, the U.S. Government, or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of Triad National Security, LLC, the U.S. Government, or any agency thereof.





