Diverse Applications of Redox Active Metal Oxides in Hydrogenation Catalysis

Sammie Roenigk PI: James R. McKone University of Pittsburgh jmckone@pitt.edu https://mckonelab.pitt.edu

Reducing the C-intensity of chemical manufacturing still requires a lot of carbon and hydrogen...

Data from Schiffer and Manthiram Joule 2017, 1 (1), 10-14.

Opportunities from renewable (over) supply

Cheap electrons from renewables provide an opportunity to use carbon-rich feedstocks and sequestered CO₂ for value-added chemical production

Year of Operation - Assuming 16% Cumulative Annual Growth Rate of Solar

https://rameznaam.com/2020/05/14/solars-future-is-insanely-cheap-2020/

Electrochemical intensification

Research question: are there circumstances under which heat and electricity together can enhance catalytic reactivity more than either can individually?

Electrochemically pumped syngas-methanol

Building a library of reactor materials for intensified chemical production

proposed reactor architecture

current iteration: proof of concept

Electrochemically pumped syngas-methanol

experimental configuration: based on modified fuel cell design

Preliminary results: Pd/C anode and Cu/C cathode

✓ Pumps H atoms from anode to cathode
□ H intermediates hydrogenate CO₂ feedstock

University of Pittsburgh

Preliminary results: Pd/C anode and Cu/C cathode

Nafion membrane exhibits low H⁺ conductivity

University of Pittsburgh

Preliminary results: Pd/C anode and Cu/C cathode

✓ Pumps H atoms from anode to cathode
□ H intermediates hydrogenate CO₂ feedstock

Metal oxide bronzes are interesting candidates for cathode catalysts

With G. Mpourmpakis

Electrochemistry and quantum chemistry can be used to predict the reactivity of H atoms inserted in H_xMO_y

Another promising application

Metal oxide bronzes as H carriers for *chemical looping hydrogenation*

Chemical Looping Hydrogenation

H_xWO₃ hydrogenates acetylene via sequential H uptake/delivery

(manuscript in prep)

12

With G. Veser

Chemical Looping Hydrogenation

With G. Veser

Very small H-atom capacity utilized in $\sim H_{0.25}WO_3$ BUT ethylene is the predominant product!

Cycle #

Summary

- Two promising modes of reactivity involving redox-active metal oxides
- Each benefits from understanding solid state proton-electron transfer
- Both present opportunities to integrate electrochemical and thermochemical reactivity for enhanced syngas utilization

Grad Students

Tejal Sawant Rituja Patil **Yifan Deng** Eli Bostian **Evan Miu** Qiudi Meng Aayush Mantri Zach Parr Becca Segel **Sammie Roenigk**

Undergraduates

Jeremy Hafner Jonathan Hightower Shawnee Sparrow Dean Miller James Hughes Craig Thomas Emily Siegel Julia McKay Gabrielle Davis Jeff Hoffmann Xavier Strittmatter **Rebecca Habeger** Margaret Orr Thomas Henry Carissa Yim Ryan Earle Natalie Britton Jared Coffelt Todd Ackerman Max Vance Audrey Christiano Zachary Sebastian Michael Kane

Collaborators

Yanni Bourmpakis (Pitt) Götz Veser (Pitt)

Judy Yang (Pitt) Stephen House (Pitt) Susan Fullerton (Pitt) Venkat Viswanathan (CMU) Ellen Matson (UR) Tim Cook (UB) Judy Lattimer (Giner) Yushan Yan (Versogen)

Financial Support

University of Pittsburgh US Department of Energy (**UCFER S000652**, SBIR 405607) Arnold and Mabel Beckman Foundation Oak Ridge Associated Universities National Science Foundation (CBET 2015859) The Lubrizol Corporation

