

Experimental validation of feedstock gasification with neutron imaging

This material is based upon work supported by the Department of Energy Award Number FWP-FEAB325.

James E. Parks II, Charles E.A. Finney, Costas Tsouris, Lawrence M. Anovitz, Matthew R. Ryder, Vlad Lobodin Oak Ridge National Laboratory

2022 FECM Spring R&D Project Review: Gasification Systems Program May 2, 2022

ORNL is managed by UT-Battelle, LLC for the US Department of Energy

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Acknowledgements

DOE/NETL	ORNL	Coal samples
David Lyons Diane Madden Jai-Woh Kim Lynn Brickett Jonathan Leske James Bennett Bill Rogers Mehrdad Shahnam	Jonathan Willocks (NTRC) Luke Daemen (SNS) Yuxuan Zhang (HFIR) Erik Stringfellow (HFIR) Scott Palko (NTRC) Hassina Bilheux (SNS/HFIR) Madhavi Martin Wim Bras	 Joe Sheets (3J Enterprises, Newburg WV) – Sample A (anthracite) Jim Mullins, Shelby Howard (Covol Fuels No. 3, Beverly KY) – Sample B (Blue Gem bituminous) Cosmin Dumitrescu (West Virginia University, Morgantown WV) – Sample C (Pittsburgh #8 bituminous)
NIST Jacob LaManna	Yarom Polsky Edgar Lara-Curzio Xin Sun	Jeff Barron (WWC Engineering, Sheridan WY) – Sample D (sub-bituminous) Mike Heger (BNI Inc., Center ND) – Sample E
APS Jan Ilavsky	ORNL (former) Bart Smith Samuel Lewis Magaie Connatser	(lignite) Chilkoot Ward (Usibelli Coal Mine), Brent Sheets (University of Alaska, Fairbanks) – Sample U (Usibelli sub-bituminous)

Research sponsored by the U.S. Department of Energy Office of Fossil Energy and Carbon Management This material is based upon work supported by the Department of Energy Award Number FWP-FEAB325. Experimental validation of feedstock gasification with neutron imaging

• Project Objective:

Utilize unique DOE neutron user facilities to characterize physical and chemical conversion of **feedstocks during gasification** for cost-effective and efficient **conversion to power and H**₂ for fuels and chemicals while **managing carbon** efficiently

• Project Timeline:

CAK RIDGE

Neutron imaging of conversion of biomass and various ranks of coal

- Continued focus on coal plus neutron scattering for characterization
- In situ studies of coal with neutron imaging

High Flux Isotope Reactor at Oak Ridge National Laboratory

Spallation Neutron Source at Oak Ridge National Laboratory

Collaboration with NETL enables experimental-modeling coupling

CAK RIDGE

Graphics courtesy of collaborators Bill Rogers and Merhdad Shahnam (NETL)

Neutron-Based Research

We have used the following facilities:

- Center for Neutron Research at the National Institute of Standards and Technology
- High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory
- Spallation Neutron Source (SNS) at Oak Ridge National Laboratory

Multiple neutron techniques/beamlines utilized

- Neutron Imaging
 - ORNL HFIR CG-1D
 - NIST CNR BT2 NIF
- Small-Angle Neutron Scattering
 - ORNL HFIR GP-SANS
 - NIST CNR vSANS
- Inelastic Neutron Scattering (Vibrational Spectroscopy)
 - ORNL SNS VISION

CAK RIDGE

National Laboratory

Neutron imaging of feedstocks enabled by high attenuation coefficient for Hydrogen Neutron attenuation for H >> attenuation for C

CAK RIDGE National Laboratory

Sub-bituminous coal shown. Relative image sizes approximate.

Neutron scattering enables characterization of microstructure and chemistry changes during dynamic gasification process

employed for characterization

S CAK RIDGE

Multiple neutron instrument campaigns for measuring physical and chemical properties of feedstock conversion

Dynamic *in situ* means that the pyrolysis and gasification is being imaged in the neutron beam in real time

Scheduled	Actual	Facility	Beamline	Samples		R&D Focus		
February 2019	February 2019	NIST CNR	BT2 NIF	Coal (anthe pre-pyrolyz	racite, bitu ed	minous(2), sub-bituminous, lignite),	Coal species: neutron effects	
August 2019	August 2019	NIST CNR	BT2 NIF	Dynamic <i>in situ</i> pyrolysis of poplar – 2 solid cylinders, 2 beds of solid rods			Dynamic in situ Pyrolysis (bio)	
December 2018	November 2019	ORNL HFI	CG-1D	Dynamic in situ pyrolysis of 2 beds of lignite			Dynamic <i>in situ</i> Pyrolysis (coal)	
July 2020	July 2020	ORNL SNS	VISION	Vibrational	spectrosco	Chemical Composition		
May 2020	December 2020	NIST CNR	vSANS	Coal , pre-pyrolyzed – scoping study for neutron scattering			Physical Structure (porosity, etc.)	
February 2021	Pending NIST restart	NIST CNR	vsans	Coal , pre-pyrolyzed – full experiment (scattering) pending scheduling			Physical Structure (porosity, etc.)	
Alternate	May 2021	ORNL HFI	GP-SANS	Coal, pre-p	byrolyzed	Physical Structure (porosity, etc.)		
July 2020	Pending NIST restart	NIST CNR	BT2 NIF	Dynamic in situ pyrolysis/gasification of coal			Dynamic <i>in situ</i> Py/Gasification	
September 2020	October 2021	ORNL HFI	CG-1D	Dynamic in situ gasification of coal			Dynamic in situ Gasification	
August 2020	August 2020	ORNL SNS	VISION	Plastics, pre-pyrolyzed			Chemical Composition	
	Proposed ►		July-December 2022	ORNL HFIR	GP-SANS	MSW & plastics, pre-pyrolyzed	Physical Structure (porosity, etc.)	
			July-December 2022	ORNL HFIR	CG-1D	Dynamic in situ gasification of MSW	Dynamic in situ Gasification	
CAK RIDGE			July-December 2022	ORNL SNS	VISION	MSW & plastics, pre-pyrolyzed	Chemical Composition	

Gasification of coal in situ & operando

- High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory
 - Imaging Beamline (CG-1D)
 - GP-SANS Beamline: Small-Angle Neutron Scattering (SANS)
- Advanced Photon Source (APS) at Argonne National Laboratory
 - Small-Angle X-ray Scattering (SAXS)

Neutron imaging is used to map stages of progressive stages of gasification

- Objective: track gasification progress in coal bed with increased levels of oxidation
- Emphasis on early stages with pyrolysis then gasification
- Note: no steam in process gas
 - since neutrons adsorb H_2

CAK RIDGE

Thermocouples -

PYROLYZER

Photographs from Oct. 2021 experiment with Usibelli, a sub-bituminous coal

Sintered quartz frit for

heated N_2 or N_2 +air

Neutron imaging shows H₂ content during coal gasification

Neutron radiographs

Initial state Final state

Thermocouple location in Yellow

- Staged O₂ introduction allows for time required (30 sec exposure) for neutron imaging while capturing various states of gasification
- Neutron attenuation greatly reduced ($\rm H_2$ content reduction) in sample area where gasification is complete
- Sample densifies as gasification occurs (bed shifts down in reactor)

В

X-ray scattering of Usibelli coal shows pore structure changes

INITIAL STATE

National Laboratory

Mean Pore Fraction 0.015 (pores ≤ 6.04 µm)

- As pyrolysis occurs, pore fraction for <6 µm pores increases as devolatilization leads to pore access and more surface area for pyrolysis and gasification
- In addition to total porosity increase, the fraction of <0.01 µm pores increases dramatically

900°C PYROLYZED

Mean Pore Fraction 0.143 (pores ≤ 6.04 µm)

<u>Fraction of total porosity < various sizes</u>

Fraction of total porosity < various sizes

*Distance across samples (constant scattering length density)

Gasification of Municipal Solid Waste (MSW)

- Bench-scale pyrolysis
- Micro-Pyrolysis GC-MS
- Spallation Neutron Source (SNS) at Oak Ridge National Laboratory
 - Beamline BL-16B (VISION):
 Vibrational Spectroscopy

Municipal Solid Waste (MSW)

- MSW composition varies greatly and is a complex mixture
- Material macro structure varies greatly too
- EPA data shows total composition
 mixtures
- Recycling is the preferred processing step, but the overall rate low
- Our focus on plastics; wood & biomass studied early in the project

<u>র্ন্</u> য	PET or PETE	Polyethylene Terephthalate			
23	HDPE	High-Density Polyethylene			
<u>(1)</u>	PVC	Polyvinyl Chloride			
<u>(4)</u>	LDPE	Low-Density Polyethylene			
<u>دی</u>	РР	Polypropylene			
È	PS	Polystyrene			
<u>ک</u>	Other				

Yard Trimmings: 7.44%

https://www.epa.gov/facts-and-figures-about-materials-waste-and-recycling/national-overview-facts-and-figures-materials

U.S. Companies Sanitizing and Homogenizing Municipal Solid Waste (MSW)

- WastAway (Morrison, TN)
 - A <u>continuous</u> process for treating (recycle separation & sanitation) MSW
 - Fluff® product can be compressed into fuel pellets
 - Focused on MSW-to-fuel process; fuel sent to power producers for demonstration
 - <u>www.wastawayfuel.com</u>
 - Images at right from WastAway website

- Green Waste Energy (Greenwich, CT)
 - A <u>batch</u> process for treating (recycle separation & sanitation) MSW
 - Green Waste Energy "C6" technologies span entire process from MSW to power production
 - greenwasteenergy.com
 - Images at right from Green Waste Energy website

CREEN WASTE ENERGY C TECHNOLOGIES MATER M

> C6 ADVANCED RECYCLING & ENERGY CONVERSION (AREC) SYSTEM

Pyrolysis of plastic shows mass loss and morphology changes

- Lab bench-top experiments of pyrolysis of plastic
- Polyethylene terephthalate (PET) samples shown
- Morphology changes significant

National Laboratory

Mass loss during pyrolysis of PET

Pyrolysis Temperature (C)

Inelastic Neutron Scattering (INS): Vibrational Spectroscopy

INS data from Beamline 16-B (VISION) is the neutron ulletNeutron analog of Raman and infrared spectroscopy with Sample Source an affinity for hydrogen-containing materials. The measurements encompass the bulk sample, ulletAnalyser not only surface effects, and are not restricted by optical selection rules. **Detector Banks** Breathing Mode at 21.8 cm⁻¹ = 0.65 THz **Neutron beam** 0 - 200 cm⁻¹ 200 - 4000 cm⁻¹ Outside view of the spectrometer chassis, facing upstream. Example of vibrational mode assignment in a https://neutrons.ornl.gov/sites/de crystalline porous material. fault/files/VISION spec sheet.pdf For more information:

Ryder et al., Phys. Rev. Lett., 113, 215502 (2014) Armstrong et al., J. Phys. Commun., 4, 072001 (2020) Inelastic Neutron Scattering provides the chemistry for a range of plastics

2800-3400 cm⁻¹

► C-H stretching

950–1700 cm⁻¹

C–C and C–O stretching
 C–H bending

350-950 cm⁻¹

20

National Laboratory

Aromatic ring deformations

0-330 cm⁻¹ - Phonon (THz) modes

Collective dynamics
 Polymer chain deformations

Inelastic Neutron Scattering shows chemical breakdown during pyrolysis

2800–3400 cm⁻¹

► C-H stretching

950–1700 cm⁻¹

► C-C and C-O stretching ► C-H bending

350–950 cm⁻¹

CAK RIDGE

National Laboratory

2

Aromatic ring deformations

 $0-330 \text{ cm}^{-1}$ – Phonon (THz) modes

Collective dynamics Polymer chain deformations

> Other plastics investigated:

• ABS

Polyethylene terephthalate (PET)

PET (Raw)

	<u>ر</u> ن	PET or	Polyethylene				
		PETE	Terephthalate				

Minimal structural changes before pyrolysis temperatures.

Pyrolysis breaks polymer chains and reduces structural complexity.

Remaining spectral features like those seen for pyrolyzed coal (graphitic).

Note: Spectra normalized to the elastic line.

Coal

Summary: Feedstock Gasification Characterization with Neutron Techniques

Coal

- 6 different coals (over 4 ranks) studied
- Dynamic *in situ* neutron imaging of gasification studies with coal capture complex stages of the process
- Porosity changes, including a fraction of < 0.01 µm pores captured with neutron scattering

Plastic (PET)

Municipal Solid Waste

- Cellulosic component: pyrolysis of biomass studied in early stages of the project
- Plastic component: 4 different
 plastics studied
- A combination of inelastic neutron scattering studies (bulk chemistry) and micro-pyrolyzer GC-MS (devolatilized gas chemistry) captures chemical changes

Publications (in process)

- Finney CEA, Tsouris C, Smith DB, Parks JE *et al.* (2022). Neutron imaging of operando biomass and coal pyrolysis.
- Ryder MR et al. (2022). Investigating pyrolysis dynamics of coal gasification using neutron spectroscopy
- Anovitz LM et al. (2022). Pore-size evolution of pyrolyzed coal using SANS and SAXS.

(Sub-Bi	uminous)											
ſ	Drying	Torrefactio	on	Pyrolysi	S			G	asificatior	I			
	100	200	300	400	500	600	700	800	900	1000	1100	1200	
22 CA Natio	K RIDGE				Gasifica	ition Ten	nperatu	re [°C]					