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Experimental validation of feedstock gasification with neutron imaging

• Project Objective: 
Utilize unique DOE neutron user facilities 
to characterize physical and chemical 
conversion of feedstocks during 
gasification for cost-effective and 
efficient conversion to power and H2 for 
fuels and chemicals while managing 
carbon efficiently

• Project Timeline:

Spallation Neutron Source
at Oak Ridge National Laboratory

High Flux Isotope Reactor
at Oak Ridge National Laboratory

FY2019

FY2020

FY2021

FY2022

Neutron imaging of conversion of 
biomass and various ranks of coal

Continued focus on coal plus neutron 
scattering for characterization

In situ studies of coal with neutron 
imaging

Focus on conversion of municipal 
solid waste (MSW) and plastics
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Collaboration with NETL enables experimental-modeling coupling

Graphics courtesy of collaborators Bill Rogers and Merhdad Shahnam (NETL)

DESIGN GUIDANCE

VALIDATION DATA

Particle-scale experiments
Neutron science
neutrons.ornl.gov

Reactor-scale modeling
Computational Fluid Dynamics

mfix.netl.doe.gov



Neutron-Based Research

We have used the following facilities:

• Center for Neutron Research at the 
National Institute of Standards and 
Technology

• High Flux Isotope Reactor (HFIR) at 
Oak Ridge National Laboratory

• Spallation Neutron Source (SNS) at 
Oak Ridge National Laboratory
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Multiple neutron techniques/beamlines utilized

• Neutron Imaging
– ORNL HFIR CG-1D
– NIST CNR BT2 NIF

• Small-Angle Neutron 
Scattering
– ORNL HFIR GP-SANS
– NIST CNR vSANS

• Inelastic Neutron Scattering 
(Vibrational Spectroscopy)
– ORNL SNS VISION

For more information on beamlines see: neutrons.ornl.gov and www.nist.gov/ncnr

http://www.nist.gov/ncnr
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Neutron imaging of feedstocks enabled by high attenuation 
coefficient for Hydrogen

Neutron tomograph (slice)

Raw 200 °C 300 °C 400 °C 600 °C 800 °C 1000 °C
Sub-bituminous coal shown.  Relative image sizes approximate.

Both physical and chemical properties of coal change as gasification 
occurs – the project uses advanced diagnostic tools to quantify changes

Graphic courtesy of Rogers & Shahnam (NETL)

Heavy 
ElementsMetals

Neutron attenuation for H >> attenuation for C

Graph from 
N. Kardjilov
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Neutron scattering enables characterization of microstructure and 
chemistry changes during dynamic gasification process

Neutron tomograph (slice) Macro pores and fissures affect mass 
and heat transfer in/out of particle

Microporosity/structure affect mass 
and heat transfer in/out of particle 
as well

Chemical composition affects gas 
product species and kinetic rates 
of reaction 

(1) Dense regions of coal are difficult to 
characterize with conventional 
techniques (SEM, XCT)

(2) Dense regions limit diffusion and 
mass transfer of desorbed 
hydrocarbons

(3) Neutron scattering techniques 
employed for characterization

Graphic courtesy of Rogers & Shahnam (NETL)
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Multiple neutron instrument campaigns for measuring 
physical and chemical properties of feedstock conversion
Scheduled Actual Facility Beamline Samples R&D Focus

February
2019

February
2019 NIST CNR BT2 NIF Coal (anthracite, bituminous(2), sub-bituminous, lignite), 

pre-pyrolyzed
Coal species:

neutron effects

August
2019

August
2019 NIST CNR BT2 NIF Dynamic in situ pyrolysis of poplar –

2 solid cylinders, 2 beds of solid rods
Dynamic in situ Pyrolysis 

(bio)

December
2018

November
2019 ORNL HFIR CG-1D Dynamic in situ pyrolysis of 2 beds of lignite Dynamic in situ Pyrolysis 

(coal)
July
2020

July
2020 ORNL SNS VISION Vibrational spectroscopy of coal, pre-pyrolyzed Chemical Composition

May
2020

December
2020 NIST CNR vSANS Coal, pre-pyrolyzed – scoping study for neutron 

scattering
Physical Structure 

(porosity, etc.)

February
2021

Pending NIST 
restart NIST CNR vSANS Coal, pre-pyrolyzed – full experiment (scattering) 

pending scheduling
Physical Structure 

(porosity, etc.)

Alternate May 2021 ORNL HFIR GP-SANS Coal, pre-pyrolyzed Physical Structure 
(porosity, etc.)

July
2020

Pending NIST 
restart NIST CNR BT2 NIF Dynamic in situ pyrolysis/gasification of coal Dynamic in situ 

Py/Gasification

September
2020 October 2021 ORNL HFIR CG-1D Dynamic in situ gasification of coal Dynamic in situ 

Gasification
August
2020 August 2020 ORNL SNS VISION Plastics, pre-pyrolyzed Chemical Composition

July–December 2022 ORNL HFIR GP-SANS MSW & plastics, pre-pyrolyzed Physical Structure (porosity, 
etc.)

July–December 2022 ORNL HFIR CG-1D Dynamic in situ gasification of MSW Dynamic in situ Gasification

July–December 2022 ORNL SNS VISION MSW & plastics, pre-pyrolyzed Chemical Composition

Proposed ►

Dynamic in situ means that the pyrolysis 
and gasification is being imaged in the 
neutron beam in real time 



Gasification of coal
in situ & operando
• High Flux Isotope Reactor (HFIR) at 

Oak Ridge National Laboratory
– Imaging Beamline (CG-1D)
– GP-SANS Beamline: Small-Angle 

Neutron Scattering (SANS)

• Advanced Photon Source (APS) at 
Argonne National Laboratory

– Small-Angle X-ray Scattering (SAXS)
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Neutron imaging is used to 
map stages of progressive 
stages of gasification 

• Objective: track gasification progress in 
coal bed with increased levels of oxidation

• Emphasis on early stages with pyrolysis then 
gasification

• Note: no steam in process gas
– since neutrons adsorb H2

WATER POOL

NEUTRON 
SOURCE 

(REACTOR
CORE)

NEUTRON GUIDE FLIGHT TUBE
(COLLIMATOR)

PYROLYZER

CAMERA

SCINTILLATOR MIRROR

NEUTRONS PHOTONS

BEFORE AFTER

Photographs from Oct. 2021 
experiment with  Usibelli, a 
sub-bituminous coal

Schematic of neutron imaging beamline 
at the High Flux Isotope Reactor at ORNL

Thermocouples

Sintered quartz frit for 
heated N2 or N2+air

Quartz
reactor
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Neutron imaging shows H2 content 
during coal gasification

• Staged O2 introduction allows for time required (30 sec exposure) for neutron 
imaging while capturing various states of gasification

• Neutron attenuation greatly reduced (H2 content reduction) in sample area 
where gasification is complete

• Sample densifies as gasification occurs (bed shifts down in reactor)
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X-ray scattering of Usibelli coal shows pore structure changes

INITIAL STATE

*Distance across samples (constant scattering length density)
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Mean 
Pore Fraction

0.015
(pores ≤ 6.04 µm)

Mean 
Pore Fraction

0.143
(pores ≤ 6.04 µm)

• As pyrolysis occurs, pore 
fraction for <6 µm pores 
increases as devolatilization 
leads to pore access and 
more surface area for 
pyrolysis and gasification

• In addition to total porosity 
increase, the fraction of 
<0.01 µm pores increases 
dramatically



Gasification of Municipal 
Solid Waste (MSW)

• Bench-scale pyrolysis 

• Micro-Pyrolysis GC–MS

• Spallation Neutron Source (SNS) at 
Oak Ridge National Laboratory

– Beamline BL-16B (VISION): 
Vibrational Spectroscopy
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Municipal Solid Waste (MSW)

https://www.epa.gov/facts-and-figures-about-materials-waste-and-recycling/national-overview-facts-and-figures-materials

Total MSW Combusted (2018)
34.6 million tons

• MSW composition varies greatly 
and is a complex mixture

• Material macro structure varies 
greatly too

• EPA data shows total composition 
mixtures

• Recycling is the preferred 
processing step, but the overall 
rate low

• Our focus on plastics; wood & 
biomass studied early in the project

Total MSW Generated (2018)
292.4 million tons

Total MSW Recycling (2018)
69.1 million tons

PET or 
PETE

Polyethylene 
Terephthalate

HDPE High-Density 
Polyethylene

PVC Polyvinyl 
Chloride

LDPE Low-Density 
Polyethylene

PP Polypropylene

PS Polystyrene

Other
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U.S. Companies Sanitizing and Homogenizing Municipal Solid Waste (MSW)

• WastAway (Morrison, TN)
– A continuous process for treating (recycle 

separation & sanitation) MSW
– Fluff® product can be compressed into 

fuel pellets
– Focused on MSW-to-fuel process; fuel sent 

to power producers for demonstration
– www.wastawayfuel.com

• Images at right from WastAway website

• Green Waste Energy (Greenwich, CT)
– A batch process for treating (recycle 

separation & sanitation) MSW
– Green Waste Energy “C6” technologies 

span entire process from MSW to power 
production

– greenwasteenergy.com
• Images at right from Green Waste Energy website

http://www.wastawayfuel.com/
https://greenwasteenergy.com/
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Pyrolysis of plastic shows mass loss and morphology changes
• Lab bench-top experiments of pyrolysis of plastic

• Polyethylene terephthalate (PET) samples shown

• Morphology changes significant

Mass loss during pyrolysis of PET
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1818 Frontier Lab EGA/PY-3030

• Micro-furnace with ceramic heater and programmable 
temperature and heating rate 

• Pyrolysis Temperature: 600 °C; Interface Temperature: 300 °C

Sample cupGas-phase pyrolysis products can be 
characterized by Micro-Pyrolysis GC–MS

GC trace for PET 
pyrolysis
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Inelastic Neutron Scattering (INS): Vibrational Spectroscopy

• INS data from Beamline 16-B (VISION) is the neutron 
analog of Raman and infrared spectroscopy with 
an affinity for hydrogen-containing materials.

• The measurements encompass the bulk sample, 
not only surface effects, and are not restricted by 
optical selection rules.

Outside view of the spectrometer 
chassis, facing upstream.
https://neutrons.ornl.gov/sites/de
fault/files/VISION_spec_sheet.pdf

Example of vibrational mode assignment in a 
crystalline porous material.

For more information:
Ryder et al., Phys. Rev. Lett., 113, 215502 (2014)
Armstrong et al., J. Phys. Commun., 4, 072001 (2020)

Neutron beam
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Other plastics 
investigated:
• Polystyrene (PS)
• Polycarbonate (PC)
• ABS

2800–3400 cm−1

► C–H stretching

950–1700 cm−1

► C–C and C–O stretching
► C–H bending

350–950 cm−1

► Aromatic ring deformations

0–330 cm−1 – Phonon (THz) modes
► Collective dynamics
► Polymer chain deformations

Inelastic Neutron Scattering provides the chemistry for a range of plastics

Note: Spectra normalized 
to the elastic line.

PET or 
PETE

Polyethylene 
Terephthalate

HDPE High-Density 
Polyethylene

PVC Polyvinyl 
Chloride

LDPE Low-Density 
Polyethylene

PP Polypropylene

PS Polystyrene

Other
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Minimal structural 
changes before 
pyrolysis temperatures.

Pyrolysis breaks polymer 
chains and reduces 
structural complexity.

Remaining spectral 
features like those seen 
for pyrolyzed coal 
(graphitic).Other plastics 

investigated:
• Polystyrene (PS)
• Polycarbonate (PC)
• ABS

2800–3400 cm−1

► C–H stretching

950–1700 cm−1

► C–C and C–O stretching
► C–H bending

350–950 cm−1

► Aromatic ring deformations

0–330 cm−1 – Phonon (THz) modes
► Collective dynamics
► Polymer chain deformations

Inelastic Neutron Scattering shows chemical breakdown during pyrolysis

Note: Spectra normalized 
to the elastic line.

PET or 
PETE

Polyethylene 
Terephthalate
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Coal

• 6 different coals (over 4 ranks) 
studied

• Dynamic in situ neutron imaging of 
gasification studies with coal 
capture complex stages of the 
process

• Porosity changes, including a 
fraction of < 0.01 µm pores 
captured with neutron scattering

Municipal Solid Waste

• Cellulosic component: pyrolysis of 
biomass studied in early stages of 
the project

• Plastic component: 4 different 
plastics studied 

• A combination of inelastic neutron 
scattering studies (bulk chemistry) 
and micro-pyrolyzer GC-MS 
(devolatilized gas chemistry) 
captures chemical changes

Publications (in process)

• Finney CEA, Tsouris C, Smith DB, 
Parks JE et al. (2022). Neutron 
imaging of operando biomass 
and coal pyrolysis.

• Ryder MR et al. (2022). 
Investigating pyrolysis dynamics of 
coal gasification using neutron 
spectroscopy

• Anovitz LM et al. (2022). Pore-size 
evolution of pyrolyzed coal using 
SANS and SAXS.

Summary: Feedstock Gasification Characterization with Neutron Techniques

Drying

Gasification Temperature [°C]
100 200 300 400 500 700600 800 900 1000 1100 1200

Pyrolysis GasificationTorrefaction

Plastic
(PET)

Coal
(Sub-Bituminous)
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