Development and Characterization of Densified Biomass-plastic Blend for Entrained Flow Gasification (DE-FE0032043)

Heather Nikolic, Dimitrios Koumoulis, Jian Shi and Kunlei Liu

University of Kentucky Lexington, KY https://caer.uky.edu/co2capture/

Overall Goal

To develop and study a coal/biomass/plastic fuel with a surface area <10 m²/gram that is suitable for oxygen-blown entrained flow gasification with slurry feed

Outline

- Background
- Objective
- Approach
- Project Details

Background

DOE believes that advances in co-gasification of coal, biomass, and waste plastics for polygeneration facilities and hydrogen production can lead to a viable technology for low-carbon energy.

- Provide co-generation with electric power and/or heat
- **Reduce GHG (CO₂) emissions**
- > Plastic wastes offer high calorific heating value
- > Biomass feedstocks are available and sourced
- Social justice and economic development for coal production region

Background The Challenge: Viscosity of Coal-biomass Slurries

Only ~5 wt% of biomass (torrefied pinewood) was successfully added to the coal slurry before reaching the upper limit for a slurry pump (~4800 cp).

Background Root Cause for Water Uptake and UK Approach

Project Specific Objectives

Gasification of coal-plastic-biomass for reducing CO₂ emissions and syngas/H₂ production

- Demonstration of hydrophobic layer encapsulated biomass production that is suitable for a slurry with solid content with ≥60 wt% of blended coal/biomass/plastic fuel.
- Completion of lab-scale kinetic and gasification studies on the blended coal/biomass/plastic fuel.
- Demonstration of practical operations in the commercially relevant, UK CAER 1 TPD entrained flow gasifier.

Technical Approach

Project Activities and Execution

Schedule

D	Task Name	Start	Finish	Task Cost	2022 2023
					Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q
1	1 Project Management and Planning	8/1/21	7/31/23	\$120,090	1
2	1.1 PMP Updated	8/31/21	8/31/21		♦ 8/31
3	1.2 Final Project Report Complete	7/31/23	7/31/23		7/31 🔹
4	2 Test Plan	8/1/21	8/31/21	\$ 19,245	
5	3 Biomass Property Control Using Plastic	9/1/21	11/30/21	\$ 45,286	
6	3.1 Densified biomass produced with at least 20% improvement of hydrophobicity and density	11/30/21	11/30/21		11/30
7	4 Biomass/Plastic Co-Extrusion for Blended Fuel Production	12/1/21	1/31/22	\$ 36,772	
8	4.1 Plastic encapsulated biomass demonstrated	1/31/22	1/31/22		1/31
9	5 Slurry Preparation and Characterization	2/1/22	3/31/22	\$ 85,471	
10	5.1 Acceptable Coal/biomass/plastic Solid Fuel Slurry Demonstrated	3/31/22	3/31/22		♦ 3/31
11	6 Solid Fuel Characterization	4/1/22	5/31/22	\$ 19,694	
12	6.1 Solid Fuel Characterization Complete	5/31/22	5/31/22		♦ 5/31
13	7 Blended Fuel Gasification Kinetic Study	6/1/22	8/31/22	\$ 35,822	
14	8 Bench Scale Gasification Study Using 1.5" ID Drop Tube Reactor	9/1/22	11/30/22	\$ 21,925	ř.
15	8.1 Completion of Gasification Kinetic Studies	11/30/22	11/30/22		11/30
16	9 FactSage Simulation	6/1/22	11/30/22	\$ 46,596	1
17	10 Gasification on 1 TPD Gasifier	8/1/22	7/31/23	\$194,658	
18	10.1 Operation Plan	8/1/22	9/30/22		
19	10.2 Slurry Preparation	10/1/22	1/31/23		1
20	10.2.1 > 600 kg blended solid fuel prepared	1/31/23	1/31/23		1/31
21	10.3 Operation	2/1/23	3/31/23		Ě.
22	10.3.1 Gasification Complete on the 1 TPD Entrained Flow Gasifier	3/31/23	3/31/23		♦ 3/3
23	10.4 Data Analysis	4/1/23	7/31/23		

Project Team and Budget

Team:

- <u>UK ME and CAER</u> plastic-biomass blend preparation, gasification using drop tube and pilot-scale gasifier
- <u>UK BAE</u> blend fuel characteristic and gasification using TGA and cost-share
- <u>Wabash Valley Resources</u> cost-share

Budget Period 1							
FY2021 FY2022 FY2023			To	tal			
DOE Funds	Cost Share	DOE Funds	Cost Share	DOE Funds	Cost Share	DOE Funds	Cost Share
\$31,030	\$26,597	\$257,136	\$70,130	\$211,834	\$28,832	\$500,000	\$125,559
54%	46%	79%	21%	88%	12%	80%	20%

Material Preparation Vitamix Blender

Most plastic pellets remain the original size. Blender motor overheats.

Plastic pellets can be broken down to a size that can go through the mesh size of 16, 12, and 8. Amount less than 10% of total.

Material Preparation Cryogenic Milling

Liquid N2

Summary of Observations

	HDPE @ Freezer Temperature	HDPE with Water	HDPE with Ice and Water	HDPE Submerged in Liquid Nitrogen
Coffee bur grinder	could not break	N/A	N/A	N/A
Vitamix blender	could not break	Barely break	Some break (<10%)	Complete breakdown
Hammer	smashed	N/A	N/A	Smashed
Knife grinder	Size limit 1/16", ~25% of material lost	N/A	N/A	N/A

Biomass Property Control Using Plastic

- Materials: torrefied wood mixed with either PET plastic or mixed plastic
- Process: Pellets were formed with 0.3 g sample in a 6.35 mm diameter die at 260°C with 1 ton of pressure for 1 minute

Impact of Initial Material Dimensions

1/8- and 1/16-inch Biomass and Plastic Particle Size Before Pelletizing

Buehler SimpliMet 1000

Samples Have Hydrophobic Surface

	Component	Component Blend	Contact	
Sample	Size	Plastic:Biomass	Angle	
	(inch)	(HHV Basis)	(°)	
Plastic Mix	1/8		131.3	
HDPE/biomass	1/8	15:85	89.0	
PET/biomass	1/8	15:85	109.2	98.10 Double click to straighten.
Plastic/biomass	1/8	30:70	98.0	
plastic/biomass	1/8	50:50	106.7	
Plastic/biomass	1/8	70:30	112.3	
HDPE/biomass	1/16	15:85	94.4	
PET/biomass	1/16	15:85	99.7	
Plastic/biomass	1/16	30:70	110.4	
plastic/biomass	1/16	50:50	108.3	
Plastic/biomass	1/16	70:30	109.6	

(Biomass contact angle not available due to uneven surface.)

15:85 HDPE/biomass observed with contact angle <90° Greater plastic component may be necessary for plastic/biomass blends

Less than 10% Water Uptake Observed after 8 Hours

Sample	Component Size	Component Blend Plastic:Biomass	Water Up		6, Based		of Biomass)
Sample	(inch)	(HHV Basis)	2	4	6	8	24
Plastic Mix	1/8	100:0	1.2	1.8	2.2	2.3	3
Biomass	1/8	0:100	113	115	120	125	148
HDPE/Biomass	1/8	15:85	2.7	5.0	4.7	4.9	5.5
PET/Biomass	1/8	15:85	-	-	-	-	-
HDPE/Biomass	1/16	15:85	1.0	3.0	2.3	3.6	9.1
PET/Biomass	1/16	15:85	4.9	5.8	5.5	6.5	8.1

Breakage observed in the 1/8" PET and 1/16" HDPE, indicating a greater plastic component may be needed for increased mechanical strength

Bulk Density for Plastic/Biomass Blends

Sample	Component Size (inch)	Component Blend Plastic:Biomass (HHV Basis)	Bulk Density (g/cm ³)
Plastic Mix	1/8		1.45
Biomass	~1.5		0.15-0.35
HDPE/Biomass	1/8	15:85	0.88
PET/Biomass	1/8	15:85	0.95
Plastic/Biomass	1/8	30:70	0.96
Plastic/Biomass	1/8	50:50	0.96
Plastic/Biomass	1/8	70:30	1.23
HDPE/Biomass	1/16	15:85	0.81
PET/Biomass	1/16	15:85	0.90
Plastic/Biomass	1/16	30:70	0.91
Plastic/Biomass	1/16	50:50	1.01
Plastic/Biomass	1/16	70:30	1.15

Decrease of Biomass Peak Intensity with Decrease of Biomass Component

O-H (water) stretch: 3338 cm⁻¹, C-O stretch: 1028cm⁻¹ 2906-2850 cm⁻¹: aliphatic symmetric and asymmetric -CH₂- stretching

Repeatable Method Developed for Water Uptake Measurements of Ground Material

Modified ASTM D2980-04

 measure saturated paper and funnel for tare mass sample saturated in funnel for immersed time
water discharged from the bottom of the funnel
measured the mass of funnel/paper/sample

Water Uptake (% Total Mass) of MWP/Biomass 70:30 (HHV Basis) Pellets Prepared with <1/16-inch Particles Submerged in Water

Immersion Time (hr)		2	4	6	8	24
Paper Towel Method	1	2.3	4.3	5.7	6.3	8.8
Filter Paper Method	1	4.6	6.3	7.5	9.3	10.4
Filter Paper Method	2	4.8	6.4	7.4	9.8	10.6
Filter Paper Method	3	5.0	6.7	7.9	9.2	10.6

BET Surface Area Measurements

Sample	BET Surface Area (m²/g)	
Biomass	0.5401	1/8" Particles
Blended Pellet	0.2452	MWP/Biomass, 15% Biomass (HHV Basis), Pellet made with 1/8" Particles
Reground Pellet	0.4068	Pellet Reground with Mortar and Pestle, MWP/Biomass, 15% Biomass (HHV Basis), Pellet made with 1/8" Particles

Notes:

System error of BET method is 10 m²/g Degassing at 104 °C for 600 min BET surface area calculated at relative pressure of 0.23

Slurryability of Blend Fuel

	/
55wt% PB_coal 2:1 (twice PB) Viscosity curve 1	Samp
- - η	(55 wt
55wt% PB_coal 1:2 (twice coal) Viscosity curve 1	Solid
- - 1	Fuel)
55wt% PB_coal 1:1 Viscosity curve 1	Coal
	PB:Co
Copy of Coal Slurry 1	
Viscosity curve 1	PB:Co
-• ŋ	PB:Co
55wt% PB_coal 2:1 (twice PB) Interpolation shear rate 100s-1	1 D.00
d(gamma)/dt = 100 1/s; eta = 1.7008 Pa⋅s η	Notes:
55wt% PB_coal 1:2 (twice coal) Interpolation shear rate 100s-1	• Plastics
d(gamma)/dt = 100 1/s; eta = 2.8378 Pa·s	biomas
- Φ - η	• PB had
55wt% PB_coal 1:1	• High a
Interpolation shear rate 100s-1 d(gamma)/dt = 100 1/s; eta = 1.2666 Pa·s	PB and
- - η	
	viscosi

Copy of Coal Slurry 1 Interpolation | shear rate | 100s-1 d(gamma)/dt = 100 1/s; eta = 0.39265 Pa·s

Anton Paar GmbH Rheometer					
Sample (55 wt% Solid Fuel)	Viscosity @100s ⁻¹ mPa.s	PB:Coal Ratio			
Coal	0.393	-			
PB:Coal	1.266	1:1			

- 2.838 1:2al1.701 al 2:1
- s:Biomass (PB) 50:50 (50%) ss) used
- particle size < 1680 microns
- mount of coal reacts with the d forms clusters – enhances viscosity (particle agglomeration)
- High amount of PB in the slurry contains a high amount of plastic particles that precipitate, and phase separation increases

Analytical Pyrolysis GC/MS

Add-on capacities

- Cryo-trap for heart-cut mode
- Gas selector for reactive gases, such as air, O_2 , H_2 , etc.
- FPD detector for sub ppm level volatile sulphur and phosphorus compounds

Plastic and Wood Separate EGA

Polystyrene (PS) and Wood EGA

Polyethylene Terephthalate (PET) and Wood EGA

- PET and Wood
 - Peak 1
 - 377 °C
 - 3.29e+6
 - Peak 2
 - 432 °C
 - 3.92e+6

Milestones & Success Criteria

Task	Milestone Title & Description	Planned Completion Date	Actual Completion Date
1.1	PMP Updated	7/21/21	7/14/2021
3.0	Densified biomass produced with at least 20% improvement of hydrophobicity and density	11/30/21	12/17/2021
4.0	Plastic encapsulated biomass demonstrated	1/31/22	12/17/2021
5.0	Acceptable Coal/biomass/plastic Solid Fuel Slurry Demonstrated	3/31/22	2/22/2022
6.0	Solid Fuel Characterization Complete	5/31/22	
8.0	Completion of Gasification Kinetic Studies	11/30/22	
10.2	> 600 kg blended solid fuel prepared	1/31/23	
10.3	Gasification Complete on the 1 TPD Entrained Flow Gasifier	3/31/23	
1	Final Project Report Complete	7/31/23	

Planned Completion Date	Actual Completion Date	Success Criterion
3/31/22	2/22/2022	Demonstration of blended solid fuel slurry with 60 wt% solids and comparable heat value to 100 % coal water slurry.
11/30/22		Collection of gasification kinetic data and identification of preliminary operating conditions.
7/31/23		Demonstrated gasification of the blended solid fuel in the UK CAER entrained flow gasifier with dataset detailing optimum operating conditions and characterization of slag phase formation and solidification.

Acknowledgements

<u>U.S. DOE-NETL</u> Andrew C. O'Connell <u>University of Kentucky</u> Ryan Kalinoski, Jameson Hunter, Hanjing Tian, and Pengfei He <u>Wabash Valley Resources, LLC</u> Dan Williams, Rory Chambers and Brad Stone