Design of bifunctional structured Fischer-Tropsch catalysts with improved heat conductivity for modular small-scale reactorappleations

Luis Caballero, Joe Brindle, Bobby Mohanty, Eric Eddings, Kevin Whitty, Michael Nigra Monday, May 2, 2022

University of Utah Team Overview

Dr. Michael Nigra Dr. Bobby Mohanty Dr. Eric Eddings Co-Pl PI

Co-Pl

Dr. Kevin Whitty Co-PI

Luis Caballero and Joe Brindle (Ph.D. Students)

Motivation

- Materials design and synthesis
- Reactor testing
- Kinetics and CFD Modeling

This project develops new structured Fischer-Tropsch catalysts which have improved heat conductivity and higher selectivity for the formation of long chain hydrocarbon products.

- Reaction: $CO + H_2 \rightarrow C_1 + C_2 + ... + C_{30}$
- Typical catalysts are supported Co and Fe.
- Operates at 10-60 bar and temperatures between 200-350°C
- Highly exothermic reaction: $\Delta H = -165 \text{ kJ/mol CO}$.
- Need strategies to manage heat from reaction!
- Product distribution and catalyst deactivation rate are highly sensitive to temperature.

Fischer-Tropsch Synthesis (FTS)

 Critical need: Rapid removal of heat generated by reaction. • Hypothesis: By designing a support with better heat transfer properties, hotspots can be minimized and deactivation can be slowed. • Novelty: First structured TiO₂ nanotube supported FTS catalyst with controlled acidity.

- activity, and selectivity.
- economic impact.

New FT catalysts that exhibit enhanced thermal conductivity,

Environmentally-responsible utilization of coal with positive

- Motivation
- Materials design and synthesis
- Reactor testing
- Kinetics and CFD Modeling

- Solution: 3-dimensional structured catalyst with conductive materials (Ti or graphite support) with FeCo nanoparticles. • FeCo was chosen because it performs better than Fe in H₂ lean feedstocks from coal or biomass.

 - Support will be functionalized with acid groups to perform both hydrocarbon grown and hydrocracking/isomerization processes simultaneously.
 - Two types of supports: **Ti-based** and C-based.

- for FTS.
- catalyst.
- Improved heat transfer by:
 - Using a structured catalyst
 - Using a conductive support material.

New materials will consist of structured, bifunctional catalysts

3-D printing techniques will allow for flexibility in design of

Preparation of Ti-based materials

Proposed structure for Ti-based support materials

from active sites.

Structure is designed to enable heat transfer away

Materials synthesis—3D printing model structures

• Test printing with PLA polymer before using Ti.

3D-printing with optimized printing parameters

• Example of Ti 3D-printed structured material.

3D-printing with optimized printing parameters

• Example of Ti 3D-printed structured materials. • Left sample printed at 260°C, right at 265°C

3D-printing with optimized printing parameters

 Example of Ti 3D-printed structured materials. • Left sample printed at 260°C, right at 265°C

Annealing yields surprise appearance of TiN

- After annealing in Ar, we found that there was titanium nitride in the sample.
- Nitrogen does not appear to be coming from PLA polymer.

Angle (2θ)

- Motivation
- Materials design and synthesis
- Reactor testing
- Kinetics and CFD Modeling

Reactor set-up

Reactor diameters: 1.77 in. and 0.37 in.

- Prepared unstructured catalytic materials supported on P25 TiO₂ and activated carbon.
- Fe and FeCo (1:1 ratio) nanoparticles supported on TiO₂ or C.
- Full characterization of these materials was completed.

Baseline catalytic testing

Baseline catalytic testing— Transient temperature profiles

Reaction conditions: pressure: 18 barg, gas flow: 175 SCCM (50 SCCM H₂, 25 SCCM CO, 100 SCCM He, temperature set point: 250°C.

Baseline catalytic testing— Catalyst performance

Measurements taken over the reaction time of 8 hours.
Alpha value is measured from C₃ and greater.

- Motivation
- Materials design and synthesis
- Reactor testing
- Kinetics and CFD Modeling

Catalysis Today 228 (2014) 32-39

CO-insertion mechanism based kinetic model of the Fischer–Tropsch synthesis reaction over Re-promoted Co catalyst

Branislav Todic^a, Wenping Ma^b, Gary Jacobs^b, Burtron H. Davis^b, Dragomir B. Bukur^{a, c, *}

^a Chemical Engineering Program, Texas A&M University at Qatar, PO Box 23874, Doha, Qatar ^b Center for Applied Energy Research, 2540 Research Park Drive, Lexington, KY 40511, United States ^c Artie McFerrin Department of Chemical Engineering, Texas A&M University, 3122 TAMU, College Station, TX 77843, United States

Kinetic modeling

Contents lists available at ScienceDirect

Catalysis Today

journal homepage: www.elsevier.com/locate/cattod

T = 503 K, P = 1.5 MPa, $H_2/CO = 2.1$, WHSV = 11.3 NL/g_{cat}/h. **Calculations from paper**

Kinetic modeling—Product formation rate

Kinetic modeling—Total hydrocarbon formation rate

T = 503 K, P = 1.5 MPa, $H_2/CO = 2.1$, WHSV = 11.3 NL/g_{cat}/h. **Calculations from paper**

Our calculations based on the paper

Kinetic modeling—1-olefin to paraffin ratio

T = 503 K, P = 1.5 MPa, $H_2/CO = 2.1$, WHSV = 11.3 NL/g_{cat}/h. **Calculations from paper** 10 4 Carbon number

Comsol modeling—Temperature profiles

- nanotube structure and TiN support materials.
- Reaction testing of Ti 3D-printed materials.
- 3D-printing of carbon-based structures.
- Additional kinetic and CFD modeling.

Add FeCo and Fe nanoparticles to acid-functionalized TiO₂

University Coalition for Fossil Energy Research

• Thank you to DOE/NETL/UCFER for funding this project! • Group website: <u>https://nanointerfaces.che.utah.edu</u>

enterface Ingineering

NETL - Penn State

