Design of bifunctional structured Fischer-Tropsch catalysts with improved heat conductivity for modular small-scale reactor applications

Luis Caballero, Joe Brindle, Bobby Mohanty, Eric Eddings, Kevin Whitty, Michael Nigra
Monday, May 2, 2022
University of Utah Team Overview

Dr. Michael Nigra
PI

Dr. Bobby Mohanty
Co-PI

Dr. Eric Eddings
Co-PI

Dr. Kevin Whitty
Co-PI

Luis Caballero and Joe Brindle (Ph.D. Students)
Outline

- Motivation
- Materials design and synthesis
- Reactor testing
- Kinetics and CFD Modeling
Overall goal

• This project develops new structured Fischer-Tropsch catalysts which have improved heat conductivity and higher selectivity for the formation of long chain hydrocarbon products.
Fischer-Tropsch Synthesis (FTS)

- Reaction: \(\text{CO} + \text{H}_2 \rightarrow \text{C}_1 + \text{C}_2 + \ldots + \text{C}_{30} \)
- Typical catalysts are supported Co and Fe.
- Operates at 10-60 bar and temperatures between 200-350°C
- Highly exothermic reaction: \(\Delta H = -165 \text{ kJ/mol CO} \).
- **Need strategies to manage heat from reaction!**
- Product distribution and catalyst deactivation rate are highly sensitive to temperature.
Critical need and hypothesis

• **Critical need:** Rapid removal of heat generated by reaction.

• **Hypothesis:** By designing a support with better heat transfer properties, hotspots can be minimized and deactivation can be slowed.

• **Novelty:** First structured TiO$_2$ nanotube supported FTS catalyst with controlled acidity.
Expected outcomes

- New FT catalysts that exhibit enhanced thermal conductivity, activity, and selectivity.
- Environmentally-responsible utilization of coal with positive economic impact.
• Motivation
• **Materials design and synthesis**
• Reactor testing
• Kinetics and CFD Modeling
• **Solution:** 3-dimensional structured catalyst with conductive materials (Ti or graphite support) with FeCo nanoparticles.
 • FeCo was chosen because it performs better than Fe in H$_2$ lean feedstocks from coal or biomass.
 • Support will be functionalized with acid groups to perform both hydrocarbon grown and hydrocracking/isomerization processes simultaneously.
 • Two types of supports: **Ti-based** and C-based.
• New materials will consist of structured, bifunctional catalysts for FTS.
• 3-D printing techniques will allow for flexibility in design of catalyst.
• Improved **heat transfer** by:
 • Using a structured catalyst
 • Using a conductive support material.
Preparation of Ti-based materials
Proposed structure for Ti-based support materials

• Structure is designed to enable heat transfer away from active sites.
Materials synthesis—3D printing model structures

- Test printing with PLA polymer before using Ti.
3D-printing with optimized printing parameters

- Example of Ti 3D-printed structured material.
3D-printing with optimized printing parameters

• Example of Ti 3D-printed structured materials.
• Left sample printed at 260°C, right at 265°C
3D-printing with optimized printing parameters

- Example of Ti 3D-printed structured materials.
- Left sample printed at 260°C, right at 265°C
Annealing yields surprise appearance of TiN

- After annealing in Ar, we found that there was titanium nitride in the sample.
- Nitrogen does not appear to be coming from PLA polymer.
• Motivation
• Materials design and synthesis
• **Reactor testing**
• Kinetics and CFD Modeling
Reactor set-up

Reactor diameters: 1.77 in. and 0.37 in.
Baseline catalytic testing

• Prepared unstructured catalytic materials supported on P25 TiO$_2$ and activated carbon.
• Fe and FeCo (1:1 ratio) nanoparticles supported on TiO$_2$ or C.
• Full characterization of these materials was completed.
Baseline catalytic testing—Transient temperature profiles

Reaction conditions: pressure: 18 barg, gas flow: 175 SCCM (50 SCCM H₂, 25 SCCM CO, 100 SCCM He), temperature set point: 250°C.
• Measurements taken over the reaction time of 8 hours.
• Alpha value is measured from C_3 and greater.
Outline

• Motivation
• Materials design and synthesis
• Reactor testing
• Kinetics and CFD Modeling
CO-insertion mechanism based kinetic model of the Fischer–Tropsch synthesis reaction over Re-promoted Co catalyst

Branislav Todica, Wenping Mab, Gary Jacobsb, Burtron H. Davisb, Dragomir B. Bukura,c,*

a Chemical Engineering Program, Texas A&M University at Qatar, PO Box 23874, Doha, Qatar
b Center for Applied Energy Research, 2540 Research Park Drive, Lexington, KY 40511, United States
c Artie McFerrin Department of Chemical Engineering, Texas A&M University, 3122 TAMU, College Station, TX 77843, United States
Kinetic modeling—Product formation rate

\[T = 503 \text{ K}, \quad P = 1.5 \text{ MPa}, \]
\[\frac{H_2}{CO} = 2.1, \quad \text{WHSV} = 11.3 \text{ NL/g}_{\text{cat}}/\text{h}. \]

Calculations from paper

Our calculations based on the paper
Kinetic modeling—Total hydrocarbon formation rate

\[T = 503 \text{ K}, \quad P = 1.5 \text{ MPa}, \quad H_2/CO = 2.1, \quad \text{WHSV} = 11.3 \text{ NL/g}_{\text{cat}}/\text{h}. \]

Calculations from paper

Our calculations based on the paper
Kinetic modeling—1-olefin to paraffin ratio

\[T = 503 \text{ K}, \quad P = 1.5 \text{ MPa}, \]
\[\frac{H_2}{CO} = 2.1, \quad \text{WHSV} = 11.3 \text{ NL/g}_{\text{cat}}/\text{h}. \]

Our calculations based on the paper
Comsol modeling—Temperature profiles

TiO₂

Ti

Line Graph: Temperature (degC)

Distance=0
Distance=0.0127
Distance=0.0254
Distance=0.0381
Distance=0.0508
Distance=0.0635
Distance=0.0762
Future work

- Add FeCo and Fe nanoparticles to acid-functionalized TiO$_2$ nanotube structure and TiN support materials.
- Reaction testing of Ti 3D-printed materials.
- 3D-printing of carbon-based structures.
- Additional kinetic and CFD modeling.
Questions?

Thank you to DOE/NETL/UCFER for funding this project!

Group website: https://nanointerfaces.che.utah.edu