

FLUIDIZED-BED GASIFICATION OF COAL-BIOMASS-PLASTICS FOR HYDROGEN PRODUCTION

FOA Number: DE-FOA-0002376

Award No: DEFE0032041

Sushil Adhikari, Tae-Sik Oh, Oladiran Fasina, Haley Mason, Ashish Bhattarai and Ayden Kemp Auburn University David C. Dayton and Pradeepkumar Sharma RTI International

RESEARCH OBJECTIVES

- The <u>main objective</u> of this research is to examine the gasification performance of coal, waste plastics, and southern pine mixture in a laboratory-scale fluidized-bed gasifier for the hydrogen production.
- Specific objectives:
 - 1. coal-plastic-biomass mixture flowability
 - 2. <u>gasification behavior</u> of the mixtures for hydrogen production
 - 3. characterization of <u>ash/slag and interaction</u> between slag/ash and refractory materials; and
 - 4. process model(s) for <u>hydrogen production cost</u>.

OBJECTIVE 1

- This objective is focused on understanding the flow behavior of the mixture at various proportions.
- The <u>expected outcome</u> of this objective is that we will be able to <u>understand</u> if three feedstocks can be blended for consistent feeding or not. The study will also highlight the <u>associated challenges</u> (if any) of feeding feedstock blends in the gasifier.

BIOMASS SAMPLE PREPARATION

The hammer mill at Auburn University

A typical hammer mill

Vibratory screen separator

HDPE #2

PLASTICS SHREDDING

LDPE #4 (Granulated)

PREPARATION OF PLASTIC SAMPLES

□ The plastic samples were shredded using a plastic shredder, sieved and ground using cryogenic grinder for many analyses.

PHYSICAL AND FLOW CHARACTERIZATION

Physical Characterization

- Bulk density
- Particle density
- Particle size distribution
- Flow index
- Cohesive strength
- Hausner ratio

DENSITY^a AND FLOWABILITY

	Bulk Density	Tap Density	Particle Density	Flowability
Name	kg/m ³	kg/m ³	kg/m ³	(Flow Index)
#1 PET	358	458	1369	Easy Flowing
#2 HDPE	323	398	953	Easy Flowing
#3 PVC	596	681	1416	Easy Flowing
#4 LDPE	87	210	1157	Cohesive
#5 PP (Food cups)	308	374	909	Easy Flowing
#6 PS (Styrofoam)	43	53	1026	Cohesive
#6 PS (Cutlery)	421	499	1065	Easy Flowing
#7 Others	471	551	1194	Easy Flowing
Coal (AL Co-Op)	691	1035	1423	Cohesive
Biomass	231	284	1461	Cohesive
Mixed Plastics	475	550	1107	Easy Flowing

^aCoefficient of variation is less than 5%

OBJECTIVE 2

- We will perform feedstock reactivity and laboratory-scale fluidized bed gasification to determine the syngas composition and contaminants under steam and oxygen gasification conditions.
- The **expected outcome** of this is to have better understanding about the <u>reactivity</u> of the mixture and also how <u>syngas composition</u> and contaminants are being impacted by various mixtures.

PROXIMATE ANALYSIS

Component	Ash [d h wt %]	Moisture [w.b.,	Volatile Matter
component	ASII [0.0., Wt.76]	vv/oj	[[[],],],]]
#1 PET	0.38	0.25	94.03
#2 HDPE	0.03	0.13	97.12
#3 PVC	6.20	0.11	88.42
#4 LDPE	24.32	0.37	74.66
#5 PP	0.27	0.05	96.21
#6 PS (Utensils)	0.02	0.45	96.35
#6 PS (Styrofoam)	0.08	0.44	98.16
#7 Others	3.09	0.17	94.20
Biomass (Southern pine)	1.51	4.40	76.37
Lignite coal	28.28	0.57	35.44

✤ Among the samples, LPDE (#4) and coal samples showed the highest ash content.

CALORIFIC VALUE

Component	Plastic Composition in MSW [%]	Heating Value[MJ/kg] (Btu/lbm)
PET	40%	22.98 (9,880)
HDPE	18%	46.31 (19,909)
PVC	6%	<u>14.52 (6,242)</u>
LDPE	18%	34.52 (14,841)
PP	2%	45.36 (19,501)
Polystyrene (Utensils)	8.40%	40.87 (17,571)
Polystyrene (Styrofoam)	3.60%	41.63 (17,897)
Other plastics	4%	35.69 (15,344)
Mixed plastics		31.94 (13,731)
Biomass (Southern Pine)		18.92 (8,134)
Coal		29.95 (12 <i>,</i> 876)

✤ Among all the samples, PVC (#3) has the lowest heating value.

ULTIMATE ANALYSIS

					2
Component	N [wt.%]	C [%]	H [%]	S [%]	CI [%]
#1 PET	N.D.	61.32	4.15	0.16	N.D.
#2 HDPE	N.D.	82.54	14.96	0.08	N.D.
#3 PVC	0.06	38.86	5.24	0.59	43.7
#4 LDPE	N.D.	67.91	11.40	0.16	0.105
#5 PP	N.D.	82.60	14.96	0.06	N.D.
#7 Others	0.35	73.75	11.02	0.04	0.093
Mixed plastics	0.0	74.68	8.38	0.08	1.55
Biomass (Southern pine)	0.01	49.67	8.22	0.03	0.007
Coal	1.57	66.59	4.09	1.16	0.015

N.D.: Not Determined or Not Detected

ASH FUSION TEMP (REDUCING ATMOSPHERE)

Component	Initial Temp. °F (°C)	Softening Temp. °F	Hemispherical Temp. °F	Fluid Temp. ºF
#3 PVC	2247 (1230)	2390	2422	2460
#4 LDPE	+2700 (1482)	+2700	+2700	+2700
#7 Others	2303 (1261)	2307	2319	2324
Mixed plastics	2610 (1432)	2616	2621	2623
Biomass (Southern pine)	2105 (1151)	2126	2132	2145
Coal	2349 (1287)	2390	2397	2420

✤ Ash fusion temperature is higher than 1150 °C; we do not anticipate of slagging during gasification runs in our set-up.

- Decomposition starts ~280 °C and completes ~ 500 °C.
- Blend 4 showed the lowest activation energy.

EXPERIMENTAL SETUP (GASIFICATION)

Figure. Experimental setup **1**. Hopper, **2**. injection screw, **3**. heat exchanger, **4**. heaters, **5**. fluidized bed gasifier, **6**. filter heaters, **7**. high temperature filter, **8**. impingers for tar sampling, **9**. condensers, **10**. ESP, **11**. primary gas analyzer, **12**. FTIR gas analyzer and **13**. FPD GC

OBJECTIVE 3

- The goal is to determine the slagging behavior of the mixtures. We will also determine the thermal conductivity of ash/slag, and viscosity of slag at various temperature.
- The **expected outcome** of this study is that we will understand how ash/slag properties are different when the mixture is gasified as compared to individual feedstocks.

ASH MELTING AND SLAG SOLIDIFICATION KINETICS

+ 2.4 °C/min cooling from 1600 °C (furnace T).

+ Temperature difference $(T_1 - T_2)$ was measured using a differential thermocouple.

+ Re-solidification starts at 40 min (~1500 °C).

+ We will add a separate TC to measure T_2 . With the improved setup, we will confirm the low temperature peak(s).

THERMAL CONDUCTIVITY MEASUREMENT (800 ~ 1400 °C)

Transient hot wire method (a line heat source in an infinite medium)

An electrical furnace will set the measurement temperature first. A sudden current flow will heat up the wire. Its resistance will change.

Benchmark sample

: Water at room temperature (~ 0.6 W m $^{\scriptscriptstyle -1}$ K $^{\scriptscriptstyle -1})$

Synthetic ash/slag

Real ash/slag from mixed feedstock

Q. Wang et al., Energy and fuels, 2019, 33, 6226-6233

SLAG-REFRACTORY REACTIVITY

and surface tension.

X-ray CT slice near the neck structure

+ We will test the effectiveness of slag ring morphology

approach in determining mixed feedstock slag density

19

OBJECTIVE 4

- This study will inform researchers about the <u>capital</u> <u>and operating costs</u> of hydrogen production from selected wastes. The model will also compare various technologies that have shown promises for gas cleanup and conditioning with base case.
- The <u>expected outcome</u> of this study is that we will able to understand the cost of producing hydrogen and required process units.

PROCESS MODELING- GOALS, OBJECTIVES & APPROACH

Develop process models to determine technologies needed for hydrogen production from coal, biomass and waste plastics gasification

□ Process modeling will achieve-

- > Process design for hydrogen production from coal, biomass and waste plastics gasification
- Comparison of emerging advanced technologies with conventional state-of-the-art technologies for syngas cleanup and conditioning
- > Estimation of capital and operating costs for hydrogen production from selected wastes

Approach

- A base-case plant is developed using the state-of-the-art technologies for gas cleanup, conditioning and hydrogen purification
- An advanced-case plant will be developed using RTI's emerging advanced syngas cleanup and conditioning technologies that provide process and economic benefits over conventional technologies

BASE CASE PLANT USING CONVENTIONAL TECHNOLOGIES (2000 TPD)

Selected Conventional Syngas Cleanup and Conditioning Technologies -

- Sour WGS process adjusts syngas composition and performs COS hydrolysis in the presence of H₂S
- Gas Cleaning removes contaminants, such as HCl, mercury using disposable sorbent fixed-beds
- Dual-Stage Selexol[®] removes acid gases- H₂S in first stage and CO₂ in second stage
- PSA can achieve >99.99 vol% hydrogen purity

Process Simulations will be used to estimate Capital and Operating Costs for Hydrogen Production

ADVANCED CASE PLANT USING EMERGING TECHNOLOGIES

Selected RTI's Emerging Syngas Cleanup and Conditioning Technologies:

- RTI's commercially available WDP process uses regenerable ZnO-based sorbent, lowers footprint and capital cost
- RTI's advanced WGS process lowers steam consumption and provides capex reduction
- Trace contaminants are removed in modular fixed-bed reactors using efficient adsorbents at elevated temperatures
- Advanced CO₂ capture technologies using Activated MDEA or RTI-NAS (Non-Aqueous Solvent) will be evaluated

Emerging Technologies will improve Net Energy Efficiency and lower Cost of Hydrogen Production

THANK YOU!

