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Project Objectives
• Project Goals

– Validate CFC hydrogen performance at a smaller scale

– Develop and commission test-scale lab to support planned test plan

– Perform test campaign on pure hydrogen from gas bottles and an electrolyzer

– Analyze data and feed into techno-economic analysis (TEA)

– Pair the CFC with an electrolyzer to demonstrate system dynamics

• Test Goals
– Physisorption performance will be demonstrated between 80K and 120K

– Estimated storage size is 100 kWh(t) of hydrogen, which is approximately 3 kg

– Current estimated size of the electrolyzer is 5 kW or 1,000 normal l/hr

– Charge and store at atmospheric pressure and discharge between atmospheric and 20 bar



Background – Past Work
• Pursued by NASA for high density storage of 

fluids such as oxygen, hydrogen, natural gas, and 
nitrogen

• Storage demonstrated that has the dynamic 
capabilities of a gas bottle, but with much higher 
storage density

• Explored aerogel, a nanoporous, composite 
material

• Tests developed to demonstrate physisorption of 
various fluids into aerogel

• Physisorption: the individual fluid molecules are 
physically bonded within the pores of a meso- or 
nano-porous storage media



Background – Technology Readiness
• NASA development of various 

aerogel packaging for 
containment in a pressure vessel

• Improved storage at a range of 
temperatures: 200K, 100K, 77K

• Demonstrated storage 
performance for nitrogen, air, 
oxygen, and argon

• Mass uptake measurements to 
demonstrate CFC aerogel 
material performance



SMALL SCALE RIG
Project Status



Small Rig for Hydrogen Adsorption
• Small scale rig experimental results will improve final design 

for CFC demo scale hydrogen storage apparatus 
– Aerogel cooling rates from LN2 as cooling fluid

– Rate of adsorption for Nitrogen and Hydrogen

– Provide validation data for numerical models

• With scale of rig, a large experimental parameter space can be 
explored with low risk and cost



Experimental Mini Vessel Rig 



Experimental Mini Vessel Rig Overview
Feedthrough for 10 
T-type thermocouples

Pressure transducer, 
0-30 PSIA

Pressure vessel 
submerged in 
LN2 in a glass 
Dewar flask

Vacuum 
and gas 
feed ports

Manually operated 
ball valvesN2 feeds through an 

800 SCCM mass flow 
controller from a high-
pressure gas cylinder 
regulated to 50 PSI



Thermocouple Instrumentation



Small Scale Testing Methodology
• Purging cycles (air displacement cycles, 3 cycles total)

• Initial precooling (110K average internal temperature before 
charging starts)

• Pressurizing cycle (12-14 PSIA internal pressure) 

• Adsorption cycle (internal pressure drop rate <0.01 PSI/min)

• Repetition of adsorption and pressurization cycles until 
pressure drop between pressurizing and adsorption cycles is 
less than 0.1 PSI 



Temperature (averaged per layer)
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Charging Cycles After Purging
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Initial Small Scale Results
• Total flow in 45.7L (Overall volume of the rig is 1.51L)

• Total mass in 57g

• Density inside of the rig 37.7 kg/m^3

• For reference: Density of N2 at rig P&T conditions 
inside of the rig with no adsorption would only be 
3.38 kg/m^3

• Density increased 11.15 times



Challenges
• Feeding ambient temperature N2 into cooled aerogel, increases 

internal temperature and charging time

0

0.1

0.2

0.3

0.4

0.5

0.6

-195

-190

-185

-180

-175

-170

-165

-160
0 20 40 60 80 100 120 140 160 180

Pr
es

su
re

, P
SI

A

Te
m

p,
 d

eg
 C

Time, Seconds

N2 Flow VS Internal Temp

Bottom Layer Temp AVG Middle Layer Temp AVG Top Layer Temp AVG Pressure

Temperature 
increase due to 
N2 flow



• To help mitigate 
the effect of feed 
temperature, a 
precooler will be 
used

• 12 ft of 1/8 in 
coiled copper 
tubing submerged 
in LN2

Small Scale Precooler



Next Steps
• Install a thermocouple for N2 feed line after the HX (inlet of the rig)
• Full LabView control over the rig (purging, charging, discharging 

cycles, PID control of feeding rates)
• Solenoid valves instead of manually operated ball valves
• Further testing and optimization of the rig with N2

• Repositioning of the rig to a rolling cart (transportable standalone 
unit for future Hydrogen tests)

• Transferring the rig to a different lab with H2 access 
• Determining adsorption rates of H2 per aerogel volume 



Testing with Hydrogen
• Utilize the same testing technique as used with N2

experiments

• Determine the adsorption rates of H2 per volume of aerogel

• Determine the optimal charging technique for H2 (constant

• Pressure vs constant mass flow charging cycles) 

• Determine the H2 flow rate needed for the CFC



TEST SCALE RIG
Project Status



Cryolite 

Aerogel

Internal Cooling System

CFC Design Cross-section



CFC Test Setup
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ANALYTICAL MODELING
Project Status



Analytical Model and Numerical Simulation
• ANSYS Fluent is the chosen analytical tool
• Due to complex nature of adsorption physics, User-Defined 

Functions are implemented which account for adsorption 
kinetics and energy

• Small scale experimental data is used to validate the 
numerical method, and provide parametric data for model 
constant calibration if needed

• Fully validated/calibrated numerical model will be used for 
design exploration of cooling schemes for the test scale CFC



Experimental Data Validation
• Current models use a simplified 2D axisymmetric model for the tank simulation

• Adsorption of H2 in silica aerogel contained in a vessel submerged in a bath of LN2

• The grey area is a bed of silica aerogel (adsorbent) and cryogenic hydrogen (adsorbate).

• Recreating the adsorption in the simulation, three parameters must be adjusted

– Mass and energy conservation equations are modified

– The Mass Flux User Defined Function (UDF) is hooked to the inlet to regulate the filling and discharge

H2

80K

80K

80K

295K



Future Technology Development
• Commercialization Potential

– Aerogels are currently commercially available, so there is no barrier to production

– Scalability of materials is not an issue like lithium ion battery

– CFC is high density and could support monthly cycling, which corresponds to 10 to 100 
hours of storage duration

• Future Integration with Target Fossil Application

– Primary target asset is ground-based gas turbines used for electricity generation

– CFC is intended to be modular and mounted on racks, like cells in a battery

– For a reference plant of 100 MW net power output with a 50% net thermal-to-electric 
efficiency,

– 100 hours of duration would require 9,090 m3



Thank You
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