Gti DE-FE0032008: Hydrogen Storage for Load-Following and Clean Power: Duct Firing of Hydrogen to Improve the Capacity Factor of NGCC FY22 FECM Spring R&D Review

May 5, 2022

Project Partners

gti


Pacific Gas and

Electric Company

- GTI Rich history in gas and energy supply, conversion, delivery, and utilization
 - Nearly 80 years of experience in managing energy research projects and has an annual research portfolio of over \$150 million
 - EPRI Addresses challenges in the electricity sector including reliability, efficiency, affordability, health, safety, and environment
 - 48 years of experience energy research and has portfolios of programs related to coal & natural gas power generation systems, renewables (including storage), distributed energy, and end use
- Southern Company Southern Company Premier energy company with 46,000 MW of generating capacity
 - Nearly 200,000 miles of electric transmission/distribution lines & 80,000 miles of natural gas pipeline
 - One of the very few U.S. utilities with a vertically integrated R&D organization including the National Carbon Capture Center (NCCC)
 - PG&E Gas and Electric Power groups are keen in decarbonizing their fleet
 - Provide utility perspective on hydrogen production and usage markets as it applies, in particular, in seasonal replenishment/makeup of their imported renewable power in their service region
 - EPRI and GTI have also developed the Low-Carbon Resources Initiative (LCRI), a five-year, collaborative effort supported by major electric and gas companies
 - Advance technologies needed for decarbonization so they can be deployed in 2030-2050

Overview

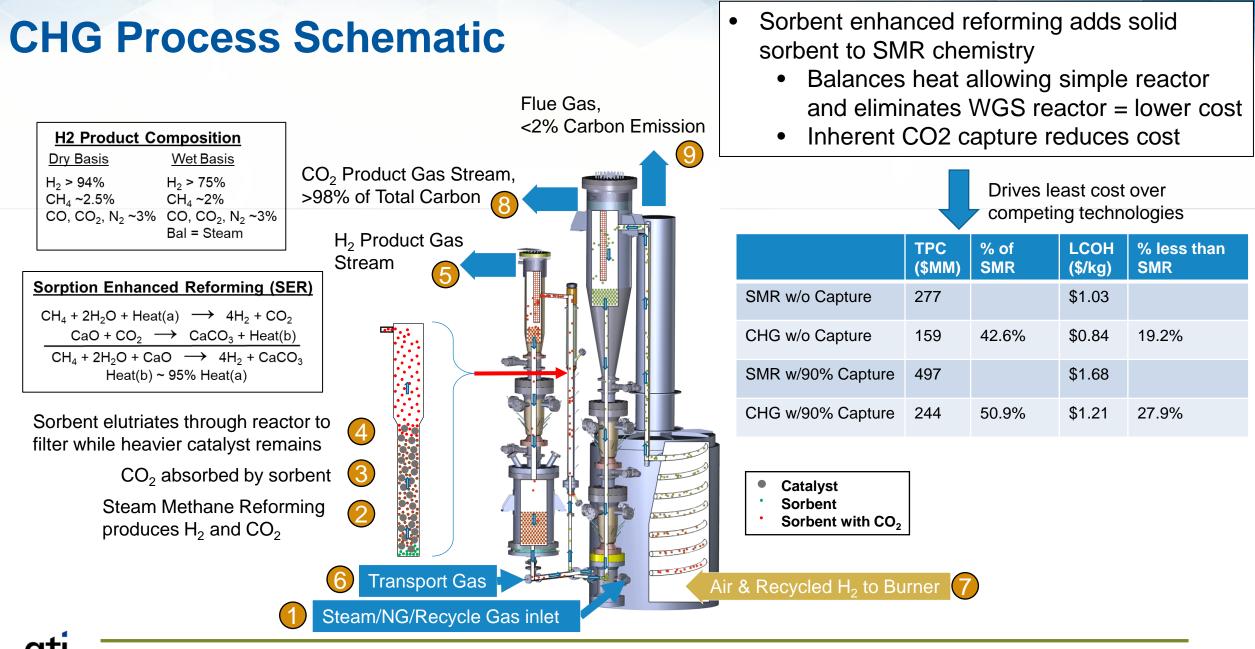
- GTI lead Pre-FEED (selected for Phase II) for energy stored in the form of hydrogen for load-following at an existing NGCC asset
 - Blue Hydrogen produced from natural gas and Variable Renewable Energy (VRE) with GTI's Compact Hydrogen Generator (CHG)
 - Capable of 54 MWh roadable storage integrated with existing NGCC plant
 - Will sequester CO_2 in commercial application
- Hydrogen combustion in duct burners/HRSG/steam turbine system to accommodate load demands with CO₂ emissions reductions
 - Precursor to hydrogen fired combined cycle power production
- Southern Co. site and Southern Co. will perform as EPC
- EPRI will complete detailed power dispatch modeling
- PG&E and LCRI provide cost share and guidance on system application
- Zeeco conceptual design dual fuel burner; STC design & cost for CHG

7.6 MWth CHG Subsystem

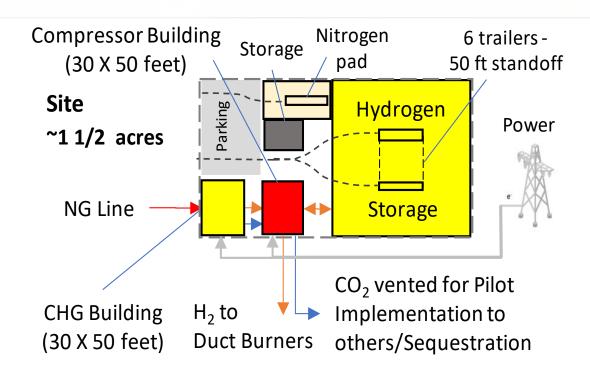
H₂ Storage Benefit

- Hydrogen storage minimizes the size of the hydrogen generation system by adding capacitance to the system.
 - Potentially lowering overall cost (plant size reduction vs. H₂ storage costs¹)
 - Problem gets worse with increased renewables
- Further benefits of storage are the ability to add H₂ from other sources (produced from curtailed renewable electricity) and provide H₂ to other applications (vehicles, heating, etc.)

¹ Reference: Ahluwalia, R. K., et. al., *System Level Analysis of Hydrogen Storage Options*, U.S. DOE Hydrogen and Fuel Cells Program 2019 Annual Merit Review and Peer Evaluation Meeting, Washington D.C. April 29-May1, 2019, Project ID: ST001

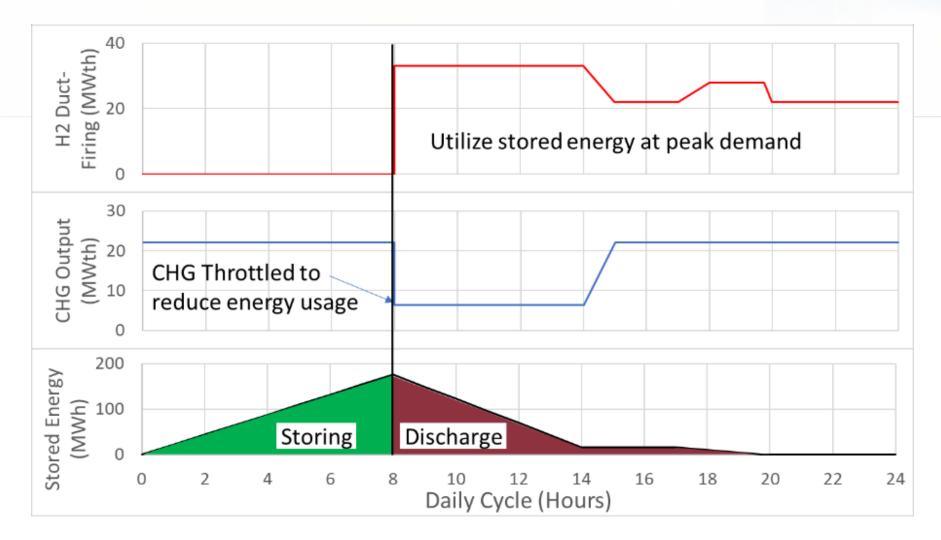

Technoeconomic Summary for Commercial Scale Plant • Euel Price = \$4 42/

Parameter	Value
Carbon Emission Reduction (% of total	22%
plant emissions)	
Carbon Captured (MT/yr)	534,616
Incremental Cost of Electricity (\$/MW-h)	\$69.67
Incremental COE w/\$50/MT Tax Credit	\$38.06
(\$/MW-h)	
Overall Plant COE	
Baseload Only (\$/MW-h)	\$42.50
Combined with Incremental COE (\$/MW-h)	\$45.69
Combined with Incremental COE w/\$50//MT Tax Credit (\$/MW-h)	\$41.98


- Fuel Price = \$4.42/MMBTU
- Electricity Hotel Load Cost

- \$27.61 Curtailment

- \$32.79 Non-Curtailment
- Baseload = 726 MWe
- Duct-burner Augmentation
 - Peak = 176 MWe
 - Daily Avg. = 96.5 MWe
- TASC = \$169.2 M
- IRR = 7.07% of TASC
- OPEX = 3.3% of TASC



Site Schematic

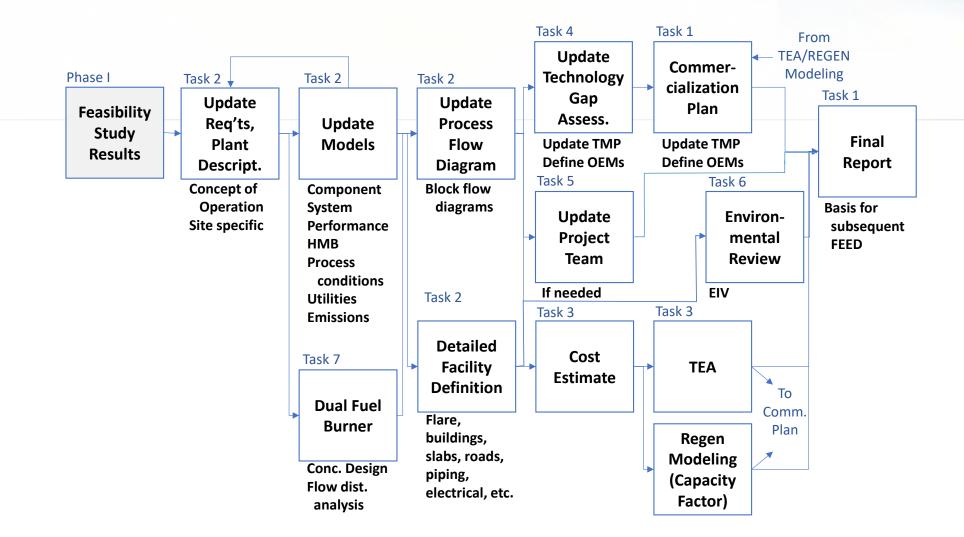
- Safety standoff for the hydrogen storage (50 feet) requires significant space
- Plan is to use an existing on-site flare for venting combustible gases during startup and upset conditions
 - If not available, a flare will be required that tentatively requires a 150-foot safety standoff (overall ~2 acres)
 - HAZOP to determine in design phase

Operating scenario for H₂-Fired Duct Burner system

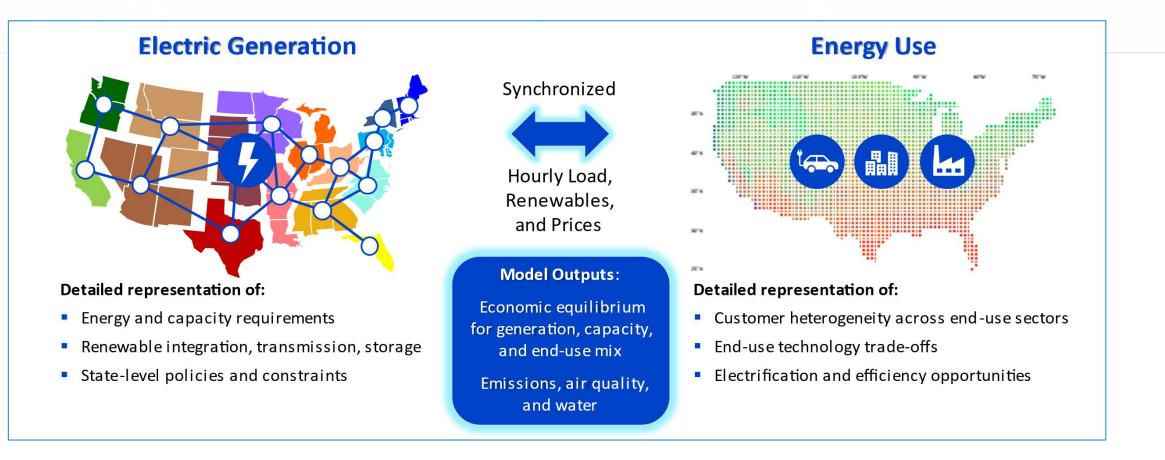
Phase I Summary

- 12-month Phase I Feasibility study confirmed the system is feasible
 - Proposed system is an improvement over alternate low carbon dispatchable power options - 17.4% lower cost
- The hydrogen will be produced by the CHG and utilized in a duct burner in a Heat Recovery Steam Generator (HRSG)
- Our demonstration will include 54 MWh of hydrogen storage
 - CO_2 capture inherent to the CHG process can capture 90% of the CO_2 (with upgrades to >98%)
- Firing rate of the duct burner is varied to let the plant respond to fluctuations of electrical load

- H₂ production is relatively constant by storing H₂


- Revenues are improved by arbitrage between use of low-cost off-peak variable electricity generation or use of stored H₂ under peak demand
- Formulated Commercialization Plan

Phase II Plan


Milestones				Update Req'ts 🔻	UpdateSystem ComponentCosts Draft Final Design
Deliverables /Key Meetings (also Quarterly Reports, Financial and Other Reporting per the checklist - not shown)			ing	VKickoff Meetin PMP	
	Fiscal Year	Start	Stop	GFY 2	022 GFY 2023
Task	Title Calendar Month	Date	Date	3 4 5 6	7 8 9 10 11 12 1 2
1	Program Management	3/22			fMeeting Commercialization Plan TMP Draft Final
				Update Req'ts	Update Pre-FEED System Design Study
2	Pre-FEE D Study	3/22	10/22		Component Costs Technoeconomic Study
3	Technoeconomic Study	9/22	12/22		Tech. Gap
4	Technology Gap Assessment	10/22	12/22		Update Complete
5	Update Project Team	9/22	1/23		
6	Environmental Review	8/22	1/23		EIV Complete
7	Dual Fuel Duct Bumer	5/22	10/22		
ŧ	Task connections	Delive	rables	Tasks/Sui	btasks 🗾 Critical Path 🛛 🔻 Milestones

gti -

Phase II Logical Progression of Tasks

US REGEN model Synchronizes Electricity Generation and Use

