Titanium-Cerium Electrode-Decoupled Redox Flow Batteries Integrated With Fossil Fuel Assets For Load-Following, Long-Duration Energy Storage

Project FE0032011

FY22 FECM Spring R&D Project Review Meeting: Energy Storage Program

May 05, 2022

presented by:

Ben Kumfer

Research Assistant Professor Dept. Energy, Environmental & Chemical Engineering

JAMES MCKELVEY SCHOOL OF ENGINEERING

Shri Sankarasubramanian

Assistant Professor Dept. Biomedical Engineering and Chemical Engineering

Team Introduction

Wash U (lead)

RFB Technology Creator

Fossil Plant Cost

Ben Kumfer (co-PI)

<u>U. Texas – San Antonio</u>

RFB Technology Creator

Shrihari Sankarasubramanian (co-PI)

Industry Partners

Technology Developer

Giner Labs

Dr. Hui Xu, CTO

Fossil Asset Owner

Ameren Missouri

Tom Callahan, Senior Manager

Challenges & Opportunities

- Increased cycling of fossil plants and reduced capacity factor due to increased penetration of intermittent renewable sources
 - Reduced efficiency, increased emissions
 - Increased maintenance and wear, reduced lifespan
- Deployment of grid-scale energy storage required to enable additional renewable sources and balance generation w/ demand

Fossil asset owners benefit from owning/operating storage plants

- Control over combined generation/storage system gives flexibility
- Can keep fossil plants operating at high capacity with optimal efficiency
- Better positioned to capture grid market opportunities
- Co-locating storage and fossil plants give opportunities for systems integration, reduced costs.

Challenges & Opportunities, Cont.

- U.S. storage deployments will reach nearly 7 GW annually with a \$6.9 billion annual market by 2025 (Wood MacKenzie)
- Storage capability needs span multiple time scales
 - short duration (< 1 hour to hourly) for voltage and frequency support and spinning reserve reduction/elimination
 - intermediate duration (multi-hour to full-day) for peak load demand and arbitrage opportunities considering diurnal load profiles and weather forecasting
 - long duration (multi-day) to improve resiliency against prolonged interruptions and to capture large amounts of energy during periods of high renewables penetrations / low demand

Project Objectives

Overall Goal:

To advance the integration of a titanium-cerium electrode-decoupled redox flow battery (Ti-Ce ED-RFB) system with conventional fossil-fueled power plants through detailed technical and economic system-level studies and component scale-up and R&D.

Objective 1:

- Increase TRL from 4 to 5, by building and demonstrating a ED-RFB cell stack with following performance characteristics:
 - 0.5 A/cm2 current density
 - 400 cm2 cell size
 - Capable of 48-hr cycle duration
 - <5% capacity loss in 1- week standby</p>

Project Objectives, Cont.

Objective 2:

- Demonstrate a pathway to achieve following cost targets for a utility-scale system:
 - Capex values of < \$500/kW (power) and < \$50/kWh (energy)
 - Levelized cost of storage (LCOS) of < \$0.05/kWh-cycle

Objective 3:

• Reveal and quantify the benefits of co-locating the storage system within the fenceline of a fossil plant.

Objective 4:

• Enable path to commercialization through market research, gap assessment, and technology maturation and commercialization planning

TEA Design Basis – Baseline Load Profile

Hypothetical power generation fleet located in Midwest consisting of

- 600 MW of solar (nameplate capacity)
- 1200 MW of wind (nameplate capacity)
- 1200 MW of baseline nuclear.

7

TEA Design Basis – Baseline Load Profile

TEA Design Basis – Case Summary

Fossil Plant	Scenario A: No Storage	Scenario B: Short Duration	Scenario C: Intermediate Duration	Scenario D: Long Duration
1. Reference NGCC NETL Baseline Case 31A	1A	1B	1C	1D
2. Reference NGCC w/CDR NETL Baseline Case 31B	2A	2B	2C	2D
3 VEC* CT (simple cycle)	3A	3B	3C	3D
4. VEC NGCC	4A	4B	4C	4D

*VEC: Venice Energy Center (Ameren MO)

Short Duration (0-2 hours)

Intermediate Duration (2-24 hours)

Long Duration (24-48 hours)

TEA Design Basis – Power Plant Specifications

Demonster	Ref. NGCC		VEC		
Parameter	Case 1	Case 2	Case 3	Case 4	
Combust. Turbine gross output (MWe)	2 x 238		2 x 169		
HRSG Steam Cycle (psig/°F/°F)	2,393/1,085/1,085		N/A	1772/1050/1050	
Steam Turbine Power (MWe)	263	213	N/A	185	
CO ₂ recovery load (MWe)	N/A 28		N/A		
Bal. of Plant Loads (MWe)	14	16	18	19	
Plant Gross (MW)	740	690	338	523	
Plant Net (MW)	727	646	320	504	
LHV Plant Efficiency (%)	59.4	52.8	35.9	53.6	
LHV Heat Rate (Btu/kWh)	5,743	6,462	9,493	6,363	
LHV CT Efficiency (%)	39.0		35.9		
NOx Control	LNB & SCR		LNB	LNB & SCR	
CT Turbine Specifications					
Туре	F-Frame		F-Frame (501F-D2)		
Outlet Temperature (°F)	1,156		1,116		
Plant Turndown Min Load (%)	22.0	N/A	50.0	22.0	
Ramp Rate (MW/min)	80.0	N/A	tbd	tbd	
Startup Time, RR Hot (min)	25	> 25	tbd	tbd	
Electrical Specifications					
Grid Interconnect (kV)	345			138	

ASPEN Process Model

RFB Development & Testing (Shri)

Redox Flow Battery (RFB)

Advantages of RFBs

- Energy and power are decoupled
 => greater design flexibility
 => lower scale-up costs
 - Rapid response
 - Suitable for multiple time scales (minutes – weeks)
 - Grid-scale demonstration projects
 underway (Vanadium type)

Ti-Ce electrode decoupled RFB

- Produced with H₂SO₄- or CH₃SO₃H-supported electrolyte
- Anion: SO₄⁻² or CH₃SO₃⁻¹

Advantages of Ti-Ce System

Nominal Cell Voltage > 1V

No phase change, solids precipitation

Minimal potential for H₂ or O₂ evolution

Advantages of Ti-Ce System

Abundant active elements

https://pubs.usgs.gov/fs/2002/fs087-02/

□ Lower material costs vs. All-V and V-Ce

□ Proven reserves for >300x the total world electricity production (25,000 TWh/year)

Scale-Up Cost Analysis

Stacks costs are fairly static with scale.

۲

- Solutions cost decrease in proportion to initial cost economies of scale.
- Tankage and fluid handling are major factors at scale

The road to low cost, long-term energy storage in ED-RFB requires low cost, fairly dense (eg: $1.8g/cm^2$ for H_2SO_4 vs. $1.16g/cm^2$ for HCI) electrolytes

Scale-Up Cost Analysis

- Project target costs are \$50/kWh for energy components and \$500/kW for power components.
- Pathways exist for the Ti-Ce RFB to meet these targets.

Scale-Up Cost Analysis – present state

	1 MW/4 MWh System		10 MW/40 MWh System	
Estimate Year	2020	2030	2020	2030
DC system (with SB and container costs) (\$/kWh)	\$367	\$299	\$341	\$278
PCS (\$/kWh)	\$22	\$17	\$17	\$13
PCS markup (\$/kW)	\$2.2	\$1.7	\$2	\$1
ESS equipment total (\$/kWh)	\$391	\$318	\$360	\$292
Integrator margin (\$/kWh)	\$58	\$48	\$36	\$29
Complete ESS equipment total (\$/kWh)	\$449	\$365	\$396	\$321
EPC (\$/kWh)	\$101	\$82	\$79	\$64
AC Installed Cost (\$/kWh)	\$551	\$447	\$475	\$386

https://www.pnnl.gov/sites/default/files/media/file/RedoxFlow_Methodology.pdf

WUSTL Ti-Ce RFB cost estimates (supplier cost)

no optimizing assumptions

	1MW/4MWh	10MW/40MWh
DC system (\$/kWh)	267	248
AC installed cost (\$/kWh)	401	345

Our model matches DOE's all-V RFB model –

Power – 1MW; Duration – 4h; 1 molar electrolyte solution concentration; 100 mW/cm² power density. Same PCS, ESS and integrator margins assumed.

The unoptimized cost of the Ti-Ce RFB lower than the cost of all-V RFB systems today.

Anion Exchange Membrane (AEM)

- □ Key enabling technology
- Highly permselective to maintain separation of Ti and Ce species and prevent capacity fade

Developed under ARPA-E grant DE-AR0000768

Anion Exchange Membrane (AEM)

Poly(ether ketone) doped with metal oxide nanoparticles to improve permselectivity

Made from 100cm² to roll-to-roll

Developed under ARPA-E grant DE-AR0000768

Task 2.0 – Component Testing, R&D

□ Test cell stack assembly

Performance Test Results

Test Cell

>3 day charge retention

Data obtained under ARPA-E grant DE-AR0000768

Cycle Performance Results

Data obtained under ARPA-E grant DE-AR0000768

Summary of Prior/Ongoing R&D Activities

ARPA-E Ionics Program (DE-AR0000768)

State-of-the art performance

- >50% increase in operating power density to 175 mW/cm² achieved without lowering the energy efficiency using a modified RFB architecture –
 - New electrode configuration used
 - New, economical electrode modification used

Data obtained under ARPA-E grant DE-AR0000768

RFB Process Model Status

Thank You

Vijay Ramani: ramani@wustl.edu

Ben Kumfer: <u>kumferb@wustl.edu</u>

Shri Sankarasubramanian: shrihari.sankarasubramanian@utsa.edu