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Challenges & Opportunities

* Increased cycling of fossil plants and reduced capacity factor due
to increased penetration of intermittent renewable sources
— Reduced efficiency, increased emissions
— Increased maintenance and wear, reduced lifespan

 Deployment of grid-scale energy storage required to enable
additional renewable sources and balance generation w/ demand

* Fossil asset owners benefit from owning/operating storage plants
— Control over combined generation/storage system gives flexibility
— Can keep fossil plants operating at high capacity with optimal efficiency
— Better positioned to capture grid market opportunities

— Co-locating storage and fossil plants give opportunities for systems
Integration, reduced costs.



Challenges & Opportunities, Cont.

 U.S. storage deployments will reach nearly 7 GW annually
with a $6.9 billion annual market by 2025 (Wood MacKenzie)

e Storage capability needs span multiple time scales

— short duration (< 1 hour to hourly) for voltage and frequency support
and spinning reserve reduction/elimination

— Intermediate duration (multi-hour to full-day) for peak load demand

and arbitrage opportunities considering diurnal load profiles and
weather forecasting

— long duration (multi-day) to improve resiliency against prolonged
Interruptions and to capture large amounts of energy during periods
of high renewables penetrations / low demand



Project Objectives

Overall Goal:

To advance the integration of a titanium-cerium electrode-decoupled redox flow battery (Ti-Ce
ED-RFB) system with conventional fossil-fueled power plants through detailed technical and
economic system-level studies and component scale-up and R&D.

Objective 1:
* Increase TRL from 4 to 5, by building and demonstrating a ED-RFB cell stack with following
performance characteristics:
— 0.5 A/lcm2 current density
— 400 cm2 cell size
— Capable of 48-hr cycle duration
— <5% capacity loss in 1- week standby



Project Objectives, Cont.

Objective 2:

 Demonstrate a pathway to achieve following cost targets for a utility-scale
system:
— Capex values of < $500/kW (power) and < $ 50/kWh (energy)
— Levelized cost of storage (LCOS) of < $0.05/kWh-cycle

Objective 3:

* Reveal and quantify the benefits of co-locating the storage system within the fence-
line of a fossil plant.

Objective 4:

« Enable path to commercialization through market research, gap assessment, and
technology maturation and commercialization planning



TEA Design Basis — Baseline Load Profile

Hypothetical power generation fleet located in Midwest consisting of
« 600 MW of solar (nameplate capacity)
« 1200 MW of wind (nameplate capacity)
« 1200 MW of baseline nuclear.
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TEA Design Basis — Baseline Load Profile
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TEA Design Basis — Case Summary

Fossil Plant Scenario A: Scenario B: Scenario C: Scenario D:
No Storage Short Intermediate | Long Duration
Duration Duration
1. Reference NGCC
) 1A 1B 1C 1D
NETL Baseline Case 31A
2. Reference NGCC w/CDR
) 2A 2B 2C 2D
NETL Baseline Case 31B
3 VEC* CT (simple cycle) 3A 3B 3C 3D
4. VEC NGCC 4A 4B 4C 4D

*VEC: Venice Energy Center (Ameren MO)

Short Duration (0-2 hours)

Intermediate Duration (2-24 hours)

LLong Duration (24-48 hours)




TEA Design Basis — Power Plant Specifications

Ref. NGCC VEC
Parameter

Case 1 Case 2 Case 3 Case 4
Combust. Turbine gross output (MWe) 2 X238 2 X 169
HRSG Steam Cycle (psig/°F/°F) 2,393/1,085/1,085 N/A 1772/1050/1050
Steam Turbine Power (MWe) 263 213 N/A 185
CO, recovery load (M\We) N/A 28 N/A
Bal. of Plant Loads (MWe) 14 16 18 19
Plant Gross (MW) 740 690 338 523
Plant Net (MW) 727 646 320 504
LHV Plant Efficiency (%) 59.4 52.8 35.9 53.6
LHV Heat Rate (Btu/kwh) 5,743 6,462 9,493 6,363
LHV CT Efficiency (%) 39.0 35.9
NOx Control LNB & SCR LNB LNB & SCR
CT Turbine Specifications
Type F-Frame F-Frame (501F-D2)
Outlet Temperature (°F) 1,156 1,116
Plant Turndown Min Load (%) 22.0 N/A 50.0 22.0
Ramp Rate (MW/min) 80.0 N/A thd thd
Startup Time, RR Hot (min) 25 > 25 thd thd
Electrical Specifications
Grid Interconnect (kV) 345 138




ASPEN Process Model

NGCC Baseline Case 31A




RFB Development & Testing
(Shri)



Redox Flow Battery (RFB)

Load or power
- source
e




Advantages of RFBs
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« Energy and power are decoupled

. => greater design flexibility
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« Rapid response
« Suitable for multiple time scales

(minutes — weeks)

« Grid-scale demonstration projects

underway (Vanadium type)

Redox flow batteries \

System cost ($/KWh)

Operational duration =
Energy/Power (h)



Ti-Ce electrode decoupled RFB

Anion Exchange Membrane (AEM)

Cesr+ e-o Ces+
~~ Cation* (Eo=1.61V vs. SHE)

Tia+ (as T|02+) +e-o Tis+
(Eo= 0.19V vs. SHE)

Anion-

* Produced with H,S0O,- or CH;SO;H-supported electrolyte
 Anion: SO,Z or CH;SO4

SHE: Standared Hydrogen Electrode



Advantages of Ti-Ce System

J Nominal Cell
Voltage > 1V

 No phase change,
solids precipitation

O Minimal potential
for H, or O,
evolution
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Advantages of Ti-Ce System
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J Abundant active elements

J Lower material costs vs. All-V and V-Ce

4 Proven reserves for >300x the total world electricity production (25,000 TWh/year)




Scale-Up Cost Analysis

600

m Cell stack Fluid handling Solutions

500 - A := 2GW/10GWh
B := IMW/4MWh

Stacks costs are fairly
static with scale.
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« Solutions cost decrease in

Cost ($/KWh)

200 1 proportion to initial cost —
@ economies of scale.
cDi?cEtzacﬁ(;t 0 . I H B B B B B . Tankage and fluid handling
A B A B A B A B are major factors at scale
All-V Fe-Cr Ti-Ce-H2S04 Ti-Ce-
CH3SO3H

The road to low cost, long-term energy storage in ED-RFB requires low cost,
fairly dense (eg: 1.8g/cm? for H,SO, vs. 1.16g/cm? for HCI) electrolytes



Scale-Up Cost Analysis
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* Project target costs are $50/kWh for energy components and $500/kW for power
components.

« Pathways exist for the Ti-Ce RFB to meet these targets.



Scale-Up Cost Analysis — present state

1 MW/4 MWh System 10 MW/40 MWh System

Estimate Year 2020 2030 2020 2030

DC system (with SB and container costs) ($/kWh) S367 S299 $341 5278
PCS ($/kWh) $22 $17 $17 $13
PCS markup (S/kW) §2.2 $1.7 §2 S1

ESS equipment total ($/kWh) $391 $318 $360 $292
Integrator margin (S/kWh) S58 S48 $36 $29

Complete ESS equipment total ($/kWh) $449 $365 $396 $321
EPC (S/kWh) S101 $82 S79 S64

AC Installed Cost ($/kWh) $551 $447 $475 $386

https://www.pnnl.gov/sites/default/files/media/file/RedoxFlow Methodology.pdf

WUSTL Ti-Ce RFB cost estimates (supplier cost)

— Nno optimizing assumptions
IMW/4MWh | 10MW/40MWh Our model matches DQE s all-V RFB model — |
Power — 1IMW; Duration — 4h; 1 molar electrolyte solution
DC system ($/kWh) 267 248 concentration; 100 mW/cm?2 power density.
AC installed cost ($/kWh) 401 345 Same PCS, ESS and integrator margins assumed.

The unoptimized cost of the Ti-Ce RFB lower than the cost of all-V RFB systems today.



https://www.pnnl.gov/sites/default/files/media/file/RedoxFlow_Methodology.pdf

Anion Exchange Membrane (AEM)

O Key enabling technology Highly selective

O Highly permselective to maintain separation of Ti and Ce
species and prevent capacity fade
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Developed under ARPA-E grant DE-AR0000768



Anion Exchange Membrane (AEM)

1 Poly(ether ketone) doped with metal oxide nanoparticles to
Improve permselectivity

Made from 100cm? to
roll-to-roll

— 10pm JEOL 12/19/2017
X 1,000 10.0kV BSECom SEM WD 10.0mm 4:09:55

Developed under ARPA-E grant DE-AR0000768



Task 2.0 — Component Testing, R&D

O Test cell stack assembly

Membrane

Electrode Gaskets

Current Collector

Endplate




Performance Test Results

Test Cell
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Cycle Performance Results
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Summary of Prior/Ongoing R&D Activities
ARPA-E lonics Program (DE-AR0000768)

AEM Improved AEM Further improved
proof of concept I performance l AEM performance

Year 1 Year 2 Year 3

AEM + ED-RFB integrated; Long duration ED-RFB
Run for 1 month run in lab

New ED-RFB created

v' AEM manufacturing and optimization

v" Long duration performance testing (1300 hrs)
v' Cost analysis

O Scale-up to 1.5 kWh

1 Next generation electrolyte formulations

O Flow-field optimization




State-of—the art performance
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« >50% increase in operating power density to 175 mW/cm? achieved without lowering the energy
efficiency using a modified RFB architecture —
o New electrode configuration used
o New, economical electrode modification used




RFB Process Model Status

Design Parameters: 0.5M Ti/Ce System in Sulfuric Acid at 25°C

. . . 24
» Farameters specific to stack configuration —Model: OCV

» Farameter specific to electrolyte reservoirs
« Farameters specific to operating conditions

|—Model: charging
—Model: discharging
Experimental: charging
7 = Experimental: discharging .

N
[N}

N

Material/fEguipment Specifications:
s FParameters sourced from manufacturers

~18F -
+ Parameters sourced from literature —
. ®
+« Farameters measured experimentally e 16
q) 0
g 14
+ Electrochemical model §
e Shunt current model 12
I «  Pumping loss model ol i
« Cell potential vs. state of charge relation 08 il
o el efficiency sensitivity to design - ] l ; ; 1
Outputs parameters 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
» Flowchannel cross-sectional area for State of Charge (SOC)

minimal power losses




Thank You

Vijay Ramani: ramani@wustl.edu

Ben Kumfer: kumferb@wustl.edu

Shri Sankarasubramanian: shrihari.sankarasubramanian@utsa.edu
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