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AOI 3: Innovative Concepts &
Technologies

“The RFI established that a substantial
number of energy storage technologies are
relatively early-stage in their development.
...The technologies need additional R&D to
clarify their current state, understand their
suitability for future advancement and
integration, and to advance their maturity
through R&D.”

Project Objectives

Reversible Methane Electrochemical Reactors for Fossil Energy Storage
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Conduct a comprehensive R&D program to demonstrate the suitability and future
advancement and integration of reversible methane electrochemical reactors as an

Efficient Energy Storage (EES) with fossil fuel power plants.




Protonic ceramic electrochemical reactor for power generation and chemicals production
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Distinguish feature of the proposed technology

1- Direct Integration with fossil assets including fossil F_,
power plants and fossil-fuel industrial applications LT —

2- PCERSs exhibit high H,S tolerance and
coking tolerance

3- Reversible methane electrochemical cells
display a theoretical round-trip efficiency of up
to 100%
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4- Reduced operating temperatures enable
hybridization with a broader range of waste
heat sources




Technology integration with existing or new fossil assets

Direct integration: the flue gas
enters the system without
additional complex separation and
purification processes to capture
CO,, allowing significant cost
reduction.
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Define the Proposed Energy Storage Technology

Systems Design Processes
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2 Interrelationships among the System Design Processes. NASA
[1] https://pragmaticarchitect.wordpress.com/2013/05/14/how-to-build-a-roadmap-define-end-state/
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DOE Status and Targets for
Reversible Solid Oxide
Performance and Cost

Metric

System Cost
($/kWe)

2018
Status

>12,000

2025/2030
Targets

(00

System Degradation

(%/1000 hrs)

Durability (hr)

<2000

5000

t{0]0]0]
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Demonstration
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Natural gas

50 kWe — 200
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Natural gas
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syngas

200 kWe - 1
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10-50 MWe




Comprehensive Techno-economic System Modeling of Reversible Methane PCER
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A Novel Hydrogen Economy based on Electrochemical Cells Using Water-Energy
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Generic LCA illustration of the water-energy nexus hydrogen production
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Experimental Studies to Define Reversible Methane PCER

Performance Parameters

Previous Protonic ceramic electrochemical reactor for power generation and chemicals production
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High-performance protonic ceramic fuel cells (PCFCs)
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Figure 1. Ultra-high-performance KSU Gen-2 PCFC recently demonstrated at KSU.

Word record PCFC performances

11



Research Activity 1 at KSU: high-performance protonic ceramic fuel
cells (PCFCs)
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High-performance protonic ceramic fuel cells (PCFCs)
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Research Activity 2 at KSU: CO, methanation catalysts
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Enhanced CO, Methanation Activity of Smy,sCej 750, 5—Ni by
Modulating the Chelating Agents-to-Metal Cation Ratio and Tuning
Metal—Support Interactions

Fan Liu, Yoo Sei Park, David Diercks, Pejman Kazempoor, and Chuancheng Duan*
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ABSTRACT: Highly active and selective CO, methanation catalysts are critical to CO,
upgrading, synthetic natural gas production, and CO, emission reduction. Wet
impregnation is widely used to synthesize oxide-supported metallic nanoparticles as the
catalyst for CO, methanation. However, as the reagents cannot be homogeneously mixed at
an atomic level, it is challenging to modulate the microstructure, crystal structure, chemical
composition, and electronic structure of catalysts via wet impregnation. Herein, a scalable
and straightforward catalyst fabrication approach has been designed and validated to
produce Smo,:Ceq7sO; ssupported Ni (SDC—Ni) as the CO, methanation catalyst. By
varying the chelating agents-to-total metal cations ratio (C/I ratio) during the catalyst

synthesis, we can readily and ‘modulate the ‘metallic surface
area, crystal srmchlm, chelmca.l mnwnnun, and electronic structure of SDC-Ni,
and Ct ion activity.

SDC-NF0A SDCNL20

The optimal C/I ratio (&ll) leads m an SDC—Ni catalyst that facilitates C—O bond
dleavage and significantly improves CO, conversion at 250 °C. A CO,-to-CH, yield of
>739% has been achieved at 250 °C. Furthermore, a stable operation of >1500 hours has been demonstrated, and no degradation is
observed. Extensive characterizations were performed to fundamentally understand how to tune and enhance CO, methanation
activity of SDC—Ni by modulating the C/1I ratio. The correlation of physical, chemical, and catalytic properties of SDC—Ni with the
C/I ratio i established and thoroughly elaborated in this work. This study could be applied to tune the oxide—support interactions

of various catalysts for enhancing the catalytic activity.

KEYWORDS: CO, methanation, SDC—Nj, oxide—support interaction, property relationship, in situ operando DRIFTS

1. INTRODUCTION

Converting CO, and renewable H, to CH, can produce
sustainable natural gas, reduce the reliance on fossil fuels, and
decrease greenhouse gases emlssons, Ieadmg to substannal
economic and envis I benefits." is
thermodynamically favorable at 200-300 °C However, CO,
molecules are very stable, and accordingly, high operating
temperatures (>300 °C) are required to activate CO,
molecules and achieve practically valuable CH, yield,
necessitating the development of highly active catalysts for
CO, conversion at <300 °C.** However, CO, methanation at
high operating temperatures consumes extensive energy and
inevitably favors CO,to-CO conversion, reduces the equili-
brium CO, conversion, and decreases CH, yield and purity.
Therefore, a CO, methanation catalyst that can attain a CH,
selectivity of >99%, a CH, yield of >70%, and a long operation
stability at 250 °C is essential for economic renewable natural
as production. Despite enormous efforts that have been
devoted to designing and synthesizing advanced CO,
‘methanation ulalyss vu nnvel zpproachgs, such as noble
I-based cat: 0 & (MOF)
supported metallic mopmds," and plasma treatment, ™

~7 ACS Publications. ~ ©222Ametan heniai sodey

there are limited facial and scalable fabrication methods, which
can readily fine-tune metal—support interactions to realize a
CO,to-CH, yield of >70% with a long-term stable operation
(>1000 hours) at 250 °C.

It has been recognized for a long time that synergistic
interactions are exhibited between oxide support and metallic
nanoparticles. These interactions typically relate to the
‘microstructure of metallic nanoparticles and oxide support,
chemical compositions and electronic structure of both oxides
and metallic nanoparticles, charge transfer between oxides and
metals, and interfacial active area, which play essential roles in
activating and converting CO,."*~*' Modulating these metal—
support interactions is therefore a promising approach to
improving CO, conversion and tuning the CO, methanation

Received: December 9, 2021
Accepted: February 27, 2022
Published: March 9, 2022

hitps/dolorg /101021 acsami 123881
ACS Appl Mater nterfces 2022, 14, 1329513301
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CO, methanation catalysts
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One facile CO, methanation catalyst synthesis approach by adjusting
chelating agent/ion ratios (C/I)



Research Activity 2 at KSU: CO, methanation catalysts
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CO, methanation catalysts
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CO, methanation catalysts
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CO, conversion in PCECs

(" Co-conversion of CO, and H,O into CH, )
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