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https://flowcharts.llnl.gov/sites/flowcharts/files/2022-04/Energy_2021_United-States_0.png

Adapted from “Some efficient solutions to recover low and medium waste heat: competitiveness of the thermoacoustic technology”, Haddad et al., 2014

https://flowcharts.llnl.gov/sites/flowcharts/files/2022-04/Energy_2021_United-States_0.png


Many technologies can take advantage of 
low-grade heat

3
“Innovative technologies for energy production from low temperature heat sources: critical literature review and thermodynamic analysis”, Brogioli and La Mantia, 2021



Flow battery + distillation column = 
Thermally regenerative battery

4https://organics.co.uk/en/products/20/ammonia-stripping-systems
https://www.cellcube.com/casestudy/gw-microgrid-campus/

Flow battery:
Distillation column:

Large scale thermal 

separations

Large scale batteries

https://organics.co.uk/en/products/20/ammonia-stripping-systems
https://www.cellcube.com/casestudy/gw-microgrid-campus/
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How the All-Aqueous Cu-TRAB 
(Cuaq-TRAB) works

“Power and energy capacity tradeoffs in an all-aqueous copper thermally regenerative ammonia battery”, Cross, et al., 2022

Positive electrolyte

Negative electrolyte

 0  C

Pure    

Discharge

Charge



6

Milestone 1: Quantify thermodynamic energy storage 

density

Milestone 2: Preliminary power density assessment 

using a COMSOL model



Solubility limits and equilibrium potentials were 
measured at varying ligand concentrations
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Ligand Concentration 

(mol kg-1)

Potential

(mV)

Br-
4 648 ± 2 

1 518 ± 1

Cu(I,II) “Standard” 150

NH3

1 23 ± 5 

4 -47 ± 1 

“An All-Aqueous Thermally Regenerative Ammonia Battery Chemistry Using Cu(I,II) Redox Reactions”, Springer, et al., 2021

“Power and energy capacity tradeoffs in an all-aqueous copper thermally regenerative ammonia battery”, Cross, et al., 2022

- Cell potential can reach ~700 mV with high concentration

- Cu(I)NH3 complex limits solubility to 0.6 M



Theoretical energy density was estimated to 
be double previous TRB chemistries

8
“Power and energy capacity tradeoffs in an all-aqueous copper thermally regenerative ammonia battery”, Cross, et al., 2022

𝑀𝑎𝑥 𝑒𝑛𝑒𝑟𝑔𝑦 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 = 𝐸𝑐𝑒𝑙𝑙
0 ∗ 𝑐𝑚𝑎𝑥 ∗ 𝐹

Cell potential: ~700 mV

Max solubility: 0.6 M

Milestone 1: Quantify thermodynamic energy storage density



Power density can be improved at elevated 
temperatures through lower ohmic losses
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Positive Electrolyte

Negative Electrolyte

Unpublished data



Power density is simulated accurately with our 
model and shows the importance of ohmic losses
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0.5 M CuBrx, 5 M NH4Br, 4 M NH3

99.5% SOC, Nafion 117, 50 ml min-1
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Milestone 2: Preliminary power density assessment using a COMSOL model
Unpublished data
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How do the electrolyte composition and operating 

parameters impact power and energy output?



Increasing ammonia concentration 
increases power density
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0.1 M Cu, 5 M NH4Br

200 ml min-1, 99% SOC

Nafion 117

4 mA cm-2 applied current

99% SOC initial

“Power and energy capacity tradeoffs in an all-aqueous copper thermally regenerative ammonia battery”, Cross, et al., 2022
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Higher copper concentration does not 
change power and increases energy density
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4 mA cm-2 applied current

99% SOC initial

5 M NH4Br, 4 M NH3

50 ml min-1, 99% SOC

Nafion 117

“Power and energy capacity tradeoffs in an all-aqueous copper thermally regenerative ammonia battery”, Cross, et al., 2022

0.40 Wh L-1

1.43 Wh L-1

2.14 Wh L-1



Increasing applied current can counteract 
ammonia crossover
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0.3 M Cu, 5 M NH4Br, 1 M NH3

200 ml min-1, 99% SOC

Nafion 117

‒ Evidence of a tradeoff between overpotential and discharge time

‒ Higher applied currents lead to higher overpotentials and less usable energy

‒ Higher applied currents decrease discharge time which provides less time for parasitic crossover 

“Power and energy capacity tradeoffs in an all-aqueous copper thermally regenerative ammonia battery”, Cross, et al., 2022
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The Cuaq-TRAB performs well compared 
to previous TRAB chemistries
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“Power and energy capacity tradeoffs in an all-aqueous copper thermally regenerative ammonia battery”, Cross, et al., 2022
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Milestone 1: Quantify thermodynamic energy storage 

density

Milestone 2: Preliminary power density assessment 

using a COMSOL model

Milestone 3: Identify performance characteristics of 

suitable membrane types



Membranes are being evaluated for peak 
and long-term performance
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Resistance data indicates that membranes 
can increase battery performance

- Charged membranes had lowest resistances

- NF membrane had low resistance, but will likely have high permeability

- Thin Sustainion membrane had best performance

Positive Electrolyte (no NH3) Negative Electrolyte (with NH3)

Unpublished data
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Links to our papers:



Thank you and please contact us if you 
have any questions!
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Derek Hall
dmh5373@psu.edu

Nicholas Cross
nrc83@psu.edu


