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Integrated Energy Storage via NH,-BEST
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NH,-BEST integrated with EGU

Ammonia assets as energy storage medium
High hydrogen/energy content
Low storage cost
Near-zero explosivity hazard
Carbon-free composition means no CO, emitted
when converted to electricity, via fuel cell or
combustion
Long-established globally fungible commodity, offers
economic flexibility via selling and/or buying to
capitalize on market conditions or address
production/supply challenges

Major project outcomes
Preliminary design of NH,-BEST subsystem and
associated EGU integration requirements
Modeled demonstration of NH;-BEST performance,
including estimated round-trip efficiency and
preliminary economics when integrated with an EGU
Road map for bringing ammonia energy storage to
commercial deployment




NH,-BEST Unit Operations
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Under development at EERC Commercially available Under development around the world



Yearly Net Generation (MW) — EGU-1
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Nameplate Capacity: 435 MW
Major Deep Cycle: 250 MW (185 MW spread)



Yearly Net Generation (MW) — EGU-2
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Nameplate Capacity: 427 MW
Major Deep Cycle: 150 MW (277 MW spread)



Yearly Net Generation (MW) — EGU-3
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Major Deep Cycle: 180 MW (257 MW spread)



Objectives/assumptions for building NH3-BEST model

* Plant/EGU operates at nameplate capacity (NPC)
 Plant follows load until demand drops to 25 MW below NPC (NPC - 25 MW)

* When demand drops to NPC — 25 MW, NH3 electrolyzer kicks in, plant ramps
up to NPC, and excess power is diverted to NH3 production and storage

* During NH3 electrolyzer operation, EGU runs at NPC, with electrolyzer
modulating all demand fluctuations, until demand increases to NPC

* When demand increases to NPC, electrolyzer shuts down until demand again
drops to NPC - 25 MW
e Stored NH3 utilization options:
= Sell into NH3 fertilizer market

= Conversion to power in direct NH3 fuel cell (or NH3 turbine) to meet grid
call for more power

" Pipeline to planned Hydrogen Hub (near EGU-2) resulting from conversion
of DGC coal gasification plant (major NH3 producer) to natural gas-fueled
hydrogen plant




Ammonia synthesis unit (electrolyzer) operational strategy

Demand = NPC

Demand = NPC- 25 MW

Demand

Demand = EGU minimum acceptable
operational capacity
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EERC Low-Pressure Electrolytic Ammonia Production (LPEA) via

Integrated (in single cell) Water Electrolysis/N2 Reduction

Targeted availability 2024 - total energy input requirement of 7.9 MWh/tonne NH,
All energy values based on amount needed to produce 1 tonne NH,
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NH3 Synthesis via Water Electrolysis + Electrically Driven Haber-Bosch

Technology available today — total energy input requirement of 12 MWh/tonne NH,*

All energy values based on amount needed to produce 1 tonne NH,
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Ammonia Production

: . Energy Consumption, Production Cost*,
Technology Pathway Commercial Readiness MWh/ton NH3 &/ton NH3
Electrolysis + electrically Toda 10.6** 297
driven Haber Bosch y 12.0 (Proton Ventures, 2017) (336 @12MWh/t)
Electrolysis/N2 reduction
(EERC target) 2024 7.9 221
SMR/Haber Bosch
(current state of the art) B 8:5 238
According to the U.S. Energy Information *Based on $28/MWh electric rate determined as follows:
Administration (EIA), annual average electricity From: Otter Tail Power Electric Rate Schedule — 2019,

prices in 2020 were:

Residential 13.15¢per kWh
Commercial 10.59¢per kWh
Transportation 9.90¢per kWh
Industrial 6.67¢per kKWh

Winter (May—October) Residential Rate = 5.446 ¢per kWh.
So, using 5.446 and EIA Residential/Industrial (13.15/6.67) ratio,
North Dakota Industrial Rate estimated at $28/M\Wh.

**MacFarlane, 2020, A roadmap to the ammonia economy; and
Torrente-Murciano, 2020, Current and future role of Haber Bosch
ammonia in a carbon-free energy landscape.



Ammonia Production for EGU Load Smoothing: Technology Implications

Technology Pathway

Electrolysis + electrically
driven Haber Bosch

Electrolysis/N2 reduction
(EERC target)

SMR/Haber Bosch
(Included for comparison)

Commercial

Today

2024

Today

Challenges, Considerations, Limitations

Max plant size available today? cost?
Economics of intermittent operation

>300°C H* exchange electrolyte needed
for temp/heat to break N2 bond.
Water electrolysis at anode, NH3

synthesis at cathode - tough kinetics.

Economic viability—>>1000t/d—>big capex
Constant operation for economic viability

Attributes: Known and Likely

Economics workable @>10 t/d,
near HB-competitive @ >60 t/d.
Modularity for scale-up as needed.

Direct use of H+ (versus going
through H2 intermediate) in single
electrolytic reactor means lower
capex/opex, energy consumption

Mature technology, near max
energy efficiency



Next steps for building NH3-BEST models (LPEA and Electrolysis + HB)

 Establish (preliminary) capacity of NH3 synthesis reactor

 Establish accurate efficiency, reactant utilization, and overall energy
consumption values for all NH3-BEST unit operations (NH3 synthesis module
plus balance-of-plant units)

 Establish capacity, capex, and opex values for all NH3-BEST unit operations
 Establish utility-sanctioned electricity cost values

* Integrate NH3 synthesis/storage (front end) with NH3 utilization (back end)
options:
1) Power generation via direct NH3 fuel cell (SOFC viable today? near term?
operating temp impact on response time?)
2) Power generation via NH3 turbine (Mitsubishi says 2025 for 40-MW unit)
3) Sell to regional and/or export markets (Japan building ammonia energy economy)

4) Pipeline to planned Beulah ND hydrogen hub (facility currently producing NH3
from coal)
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From: Progressive Farmer/DTN, 10 November 2021

Also from Progressive Farmer/DTN:
January 2022: $1230/ton

“Considering the current status
of the market, prices would
appear to have peaked in
February with the latest and
largest Tampa ammonia
settlement on record, leaving us
with a stable-to-softening short-
term price outlook heading into
spring.”

2/11/2022



As ammonia utility expands from fertilizer to fertilizer + fuel/H2 carrier, what happens to price?

Figure 1. Anhydrous Ammonia Prices per Ton in lllinois From 2008 to 2021
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Source: US Department of Agriculture, Agricultural Marketing Service farmdoc

lllinois ammonia price was $1,498 on February 10, $1,503 on February 24 (Russia invaded Ukraine).

On March 23, price was $1,516



