Ammonia-Based Energy Storage (NH3-BEST)

+ Project Utility Partners: Basin Electric Minnkota Power Ottertail Power

Critical Challenges. **Practical Solutions.**

Presented at: U.S. Department of Energy National Energy Technology Laboratory FY22 FECM Spring R&D Project Review Meeting 5 May 2022

Integrated Energy Storage via NH₃-BEST

 $\rm NH_3\text{-}BEST$ integrated with EGU

Ammonia assets as energy storage medium

- High hydrogen/energy content
- Low storage cost
- Near-zero explosivity hazard
- Carbon-free composition means no CO₂ emitted when converted to electricity, via fuel cell or combustion
- Long-established globally fungible commodity, offers economic flexibility via selling and/or buying to capitalize on market conditions or address production/supply challenges

Major project outcomes

- Preliminary design of NH₃-BEST subsystem and associated EGU integration requirements
- Modeled demonstration of NH₃-BEST performance, including estimated round-trip efficiency and preliminary economics when integrated with an EGU
- Road map for bringing ammonia energy storage to commercial deployment

NH₃-BEST Unit Operations

Under development at EERC

Commercially available

Under development around the world

Yearly Net Generation (MW) – EGU-1

Nameplate Capacity: 435 MW Major Deep Cycle: 250 MW (185 MW spread) Yearly Net Generation (MW) – EGU-2

Nameplate Capacity: 427 MW Major Deep Cycle: 150 MW (277 MW spread)

500.0

Yearly Net Generation (MW) – EGU-3

Nameplate Capacity: 437 MW Major Deep Cycle: 180 MW (257 MW spread)

Objectives/assumptions for building NH3-BEST model

- Plant/EGU operates at nameplate capacity (NPC)
- Plant follows load until demand drops to 25 MW below NPC (NPC 25 MW)
- When demand drops to NPC 25 MW, NH3 electrolyzer kicks in, plant ramps up to NPC, and excess power is diverted to NH3 production and storage
- During NH3 electrolyzer operation, EGU runs at NPC, with electrolyzer modulating all demand fluctuations, until demand increases to NPC
- When demand increases to NPC, electrolyzer shuts down until demand again drops to NPC – 25 MW
- Stored NH3 utilization options:
 - Sell into NH3 fertilizer market
 - Conversion to power in direct NH3 fuel cell (or NH3 turbine) to meet grid call for more power
 - Pipeline to <u>planned</u> Hydrogen Hub (near EGU-2) resulting from conversion of DGC coal gasification plant (major NH3 producer) to natural gas-fueled hydrogen plant

Ammonia synthesis unit (electrolyzer) operational strategy

EERC Low-Pressure Electrolytic Ammonia Production (LPEA) via Integrated (in single cell) Water Electrolysis/N2 Reduction Targeted availability 2024 – total energy input requirement of 7.9 MWh/tonne NH₃ All energy values based on amount needed to produce 1 tonne NH₃

NH3 Synthesis via Water Electrolysis + Electrically Driven Haber-Bosch

Technology available today – total energy input requirement of 12 MWh/tonne NH_3^*

All energy values based on amount needed to produce 1 tonne NH₃

Ammonia Production					
Technology Pathway	Commercial Readiness	Energy Consumption, MWh/ton NH3	Production Cost*, \$/ton NH3		
Electrolysis + electrically driven Haber Bosch	Today	10.6** 12.0 (Proton Ventures, 2017)	297 (336 @12MWh/t)		
Electrolysis/N2 reduction (EERC target)	2024	7.9	221		
SMR/Haber Bosch (current state of the art)	Today	8.5	238		

According to the U.S. Energy Information Administration (EIA), annual average electricity prices in 2020 were:

- Residential 13.15¢per kWh
- Commercial 10.59¢per kWh
- Transportation 9.90¢per kWh
- Industrial
 6.67¢per kWh

*Based on \$28/MWh electric rate determined as follows: From: Otter Tail Power Electric Rate Schedule – 2019, Winter (May–October) Residential Rate = 5.446 ¢per kWh. So, using 5.446 and EIA Residential/Industrial (13.15/6.67) ratio, North Dakota Industrial Rate estimated at \$28/MWh.

**MacFarlane, 2020, A roadmap to the ammonia economy; and Torrente-Murciano, 2020, Current and future role of Haber Bosch ammonia in a carbon-free energy landscape.

Ammonia Production for EGU Load Smoothing: Technology Implications

Technology Pathway	Commercial	Challenges, Considerations, Limitations	Attributes: Known and Likely
Electrolysis + electrically driven Haber Bosch	Today	Max plant size available today? cost? Economics of intermittent operation	Economics workable @≥10 t/d, near HB-competitive @ ≥60 t/d. Modularity for scale-up as needed.
Electrolysis/N2 reduction (EERC target)	2024	≥300°C H ⁺ exchange electrolyte needed for temp/heat to break N2 bond. Water electrolysis at anode, NH3 synthesis at cathode → tough kinetics.	Direct use of H+ (versus going through H2 intermediate) in single electrolytic reactor means lower capex/opex, energy consumption
SMR/Haber Bosch (Included for comparison)	Today	Economic viability→≥1000t/d→big capex Constant operation for economic viability	Mature technology, near max energy efficiency

Next steps for building NH3-BEST models (LPEA and Electrolysis + HB)

- Establish (preliminary) capacity of NH3 synthesis reactor
- Establish accurate efficiency, reactant utilization, and overall energy consumption values for all NH3-BEST unit operations (NH3 synthesis module plus balance-of-plant units)
- Establish capacity, capex, and opex values for all NH3-BEST unit operations
- Establish utility-sanctioned electricity cost values
- Integrate NH3 synthesis/storage (front end) with NH3 utilization (back end) options:
 - 1) Power generation via direct NH3 fuel cell (SOFC viable today? near term? operating temp impact on response time?)
 - 2) Power generation via NH3 turbine (Mitsubishi says 2025 for 40-MW unit)
 - 3) Sell to regional and/or export markets (Japan building ammonia energy economy)
 - 4) Pipeline to planned Beulah ND hydrogen hub (facility currently producing NH3 from coal)

From: Progressive Farmer/DTN, 10 November 2021

Also from Progressive Farmer/DTN:

January 2022: \$1230/ton

"Considering the current status of the market, prices would appear to have peaked in February with the latest and largest Tampa ammonia settlement on record, leaving us with a stable-to-softening shortterm price outlook heading into spring."

2/11/2022

As ammonia utility expands from fertilizer to fertilizer + fuel/H2 carrier, what happens to price?

Illinois ammonia price was \$1,498 on February 10, \$1,503 on February 24 (Russia invaded Ukraine). On March 23, price was \$1,516