First-principles techno-economic analysis of Long Duration Energy Storage

NETL – Research and Innovation Center

Presented by Lee Aspitarte, PhD (Battelle) --- lee.aspitarte@netl.doe.gov

The need for energy storage

Variable Renewable Energy (VRE) fluctuations over many timescales

Guerra, Omar J. "Beyond Short-Duration Energy Storage." *Nature Energy* (2021) <u>https://doi.org/10/gjwh76</u>.

 Need multi day and seasonal storage at high renewable fraction

Albertus et al. "Long-Duration Electricity Storage Applications, Economics, and Technologies." Joule (2020):. <u>https://doi.org/10/gg6vfx</u>.

Cost Projections

Oliver et al. "Projecting the Future Levelized Cost of Electricity Storage Technologies." *Joule* (2019): <u>https://doi.org/10/gf8tkh</u>.

Predictions with current technologies and learning curves (i.e. no research intervention)

Energy Storage systems

Levelized Cost of Storage

Energy capacity capital most important for long duration

Ò

What C_{kWh} (energy capital cost) is needed?

What combination of C_{kWh} , C_{kW} , and η_{RT} are possible to achieve 0.1\$/kWh LCOS?

Technology Down Selection: Material Energy Capital Cost C_{kWh,mat}

 $C_{kWh,mat} < \sim 10$ /kWh as a criterion for long duration (~100 hours) fundamental viability

Accumulate many different Material Cost

Vanadium oxide 20 \$/kg

Sensible Thermal $ho_E={
m C_p}\Delta T$

Define forms of energy and

their Energy Density

 $\rho_E \left[\frac{kWh}{kg}\right]$

Storage Medium $C_{kWh,total} > C_{kWh,mat} [\frac{\$}{kWh}] = \frac{C_{mat}[\frac{\$}{kg}]}{\rho_E [\frac{kWh}{kg}]}$

Just testing for long-duration viability, candidates then need further examination.

- Balance of systems
- Efficiency
- Power costs
- Lifetime

Acumulate data for $\rho_E \left[\frac{kWh}{kg}\right]$ and $C_{mat}\left[\frac{\$}{kg}\right]$

Sources

Physical properties in used in ρ_E equations

Examples

- C_p for Thermal Storage in rocks
- Scientific publications, ΔV for 1 mol Graphite (C_6) + 1 mol *LiCoO*₂ (Lithium ion battery)
 - ΔG for Hydrogen Electrolysis/Fuel Cell

108 Material Prices used in at least 1 storage medium

Sources

- Scientific publications
- USGS commodity data
- Internet Spot prices
- Alibaba web scraping

Examples

- Rocks •
- Graphite
- *LiCoO*₂
- Salt cavern $\left(\frac{1}{k a H_{z}}\right)$

Eliminating technologies for long duration

Thermomechanical storage

Thermal energy storage media with $C_{kWh,mat} < 10 \frac{1}{\nu V}$

(Electro)Chemical technologies

Chemical energy with electrochemical transformation at electrode

Decoupled System (e.g. Vanadium Redox Flow Battery)

- to Energy/power inflexibility.
 - Metal air perhaps cheap/energy dense enough to get around this

- Synthetic fuel storage in caverns
 - LRC = Lined Rock Cavern
 - Salt = Solution-mined Salt Cavern

Promising Technologies

Oliver et al. "Projecting the Future Levelized Cost of Electricity Storage Technologies." *Joule* (2019): <u>https://doi.org/10/gf8tkh</u>.

$$LCOS\left(\frac{\$}{kWh}\right) \propto \frac{C_{kWh}}{\eta_{out}lifetime} \cdot duration$$

<u>Seasonal (>100 hours)</u>: $C_{kWh} < \sim 1$

• Synthetic fuels with underground storage

<u>Multi-day (10-100 hours)</u>: $C_{kWh} < \sim 10$ /*kWh*

- Pumped thermal energy storage (PTES) with cheap thermal storage
- Low cost material flow batteries
- Metal air batteries

<u>Daily (<10 hours)</u>: Many discharges to payback capital, efficiency is key.

• Lithium ion likely to not be out-competed in near term

Lee.Aspitarte@netl.doe.gov 17

- Material Energy Cost (\$/kWh) 10^{4} 10² 10⁰ 10^{-2} 10^{-4} SMES* Thermochemical Pressure Tank* Pressure Cavern Gravity Synthetic Fuel Metal Air Hybrid Flow Thermal Flywheel* Flow Battery Pseudocapacitor Electrode Battery Capacitor Thermal Liquid Metal Dielectric Sensible Latent Battery Solid Dual strength Limited Technology
- Determined key long ٠ duration energy storage figure of merit

10⁶

- C_{kWh} η_{out} lifetime
- Performed an ٠ extensive search for storage media with $C_{kWh} < 10 \frac{\varphi}{kWh}$

Thank you!

*= Material-

EDLC

energy_type Chemical

> (Decoupled) Chemical (Coupled) Thermal Pressure Kinetic

Magnetic

Gravitational

Electrostatic

kWh