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SRS is a key DOE site responsible for environmental 

stewardship and cleanup, waste management, and 

disposition of nuclear materials.

Savannah River Site Overview

Savannah 

River

Savannah River Site

• ~ 310 square miles (~803 square kilometers)

• Nuclear materials production history

o 5 nuclear materials production reactors

o 2 separations plants

o Heavy water extraction plant

o Nuclear fuel and target fabrication facility

o Solid and liquid waste disposition processes

• Environmental legacy

o 130 million liters highly contaminated liquid

o 6 Fuel basins 

o Decommissioned radiological facilities

o 515 radionuclide or chemically contaminated soil and 

groundwater waste sites 

o 5 coal fired power plants

o Over 2 x 106 m3 contaminated groundwater
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• SRNL has been exploring new long-term monitoring strategies for many 

years

▪Shift from a reactive monitoring strategy to a proactive monitoring strategy

▪Reduce costs by up to 90% 

• Major ongoing field demonstration at the SRS F-Area Seepage Basins 

(ALTEMIS)

▪Primarily concentrated on long-term monitoring of radionuclide contaminants

Objectives

• Explore the use of techniques developed as part of ALTEMIS applied to 

coal ash contaminated sites

▪ Identify the master variables associated with contaminant transport using data 

analytics and AI/ML techniques

• Identify additional historical datasets that may be incorporated (e.g., 

ecology studies) 

Motivation and Objectives
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• Enhanced attenuation strategies have created the potential for secondary 

source terms (e.g., I-129, U, Sr-90) that will require continuous monitoring 

over the course of the next several decades to ensure compliance with 

regulatory requirements

Zone of Vulnerability Vulnerable Contaminants Threat Conditions Long-Term Monitoring Focus

Basin soils and vadose 

zone
All Infiltration through cap Cap integrity and moisture content

Treatment zones in 

gates
Uranium, Sr-90, I-129

Low pH (Sr-90, uranium) and 

reducing conditions (I-129)
pH, ORP, groundwater flow rate

Wetlands Uranium, Sr-90, I-129

Low pH, significant change in 

wetland morphology, vegetation, 

loss of organic matter, etc.

pH, ORP, physical configuration 

(e.g., topography, course of Fourmile 

Branch, frequency of intense rain 

events)

• “Zones of Vulnerability”:

Background – ALTEMIS
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In Situ Real-time Monitoring Monitoring For Early Warning Systems (SRNL, LBNL)

▪ In situ sensors In situ monitoring technologies for monitoring master variables 

Spatially Integrative Monitoring: Surface Cap Systems Monitoring (PNNL)

▪ Geophysical monitoring of the integrity of the surface cap is critical to reduce infiltration into 

source zones containing residual contaminant

Spatially Integrative Monitoring: wetland monitoring (LBNL)

▪ State of the-of-art spatially integrative techniques for monitoring groundwater and wetland 

including UAV spectral methods

▪ Fiber optic sensors for temperature and conductivity

Geochemical Characterization and Monitoring (SRNL, CRESP, MSIPP)

▪ Mitigation of geochemical conditions that could reverse contaminant attenuation, or the 

contaminant release that might occur over decades or even centuries.

Goal is to create a site specific comprehensive monitoring system that will 

improve effectiveness, while significantly reducing overall cost.  Goal is to 

transition approaches to other EM/LM sites.  

Long-Term Monitoring Paradigm as Applied to the F-Area Seepage Basins
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Contaminant 
Concentration Estimation

Kalman Filter

Exploratory Data Analysis

Quantification of 
Correlations

Kalman Filter 

Results

Background – ALTEMIS

Wainwright, et al. (LBNL)
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From: Wainwright, Meray, Upadhyay
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Background – ALTEMIS



D-Area Ash Basins

• 484-D Powerhouse: Built in 1953 and operated until 2012

▪ ~160,000 tons of coal per year

▪ Deactivation of the D-Area Powerhouse and associated facilities began in 2012

• 488-2D Ash Basin: Dewatered, coal ash contaminated soils were 

excavated and consolidated in 488-4D Ash Landfill.  Ultimately left open 

as stormwater retention pond.

• 488-4D Ash Landfill: Geosynthetic cap installed over contaminated soils.

• 488-1D Ash Basin: Dewatered, coal ash contaminated soils were 

excavated and consolidated in the eastern end.  Geosynthetic cap 

installed over contaminated soils. West end kept open as a stormwater 

retention pond.

• 489-D Coal Pile Runoff Basin: Clean closure, contaminated soils 

excavated and placed in eastern portion of 488-1D Ash Basin.

• Groundwater monitoring continues around the facility to ensure 

geosynthetic covers remain effective.
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D-Area Ash Basins

Source: SRNS-RP-2021-03748



D-Area Ash Basins – Datasets

• 139 groundwater monitoring wells with data spanning mid 1980s to present day

▪ Some wells were added/removed during the cleanup efforts

• 360 analytes

▪ Geochemical measurements, heavy metal concentrations, radionuclides, chlorinated solvents, 

other organic and inorganic compounds

• Historical investigations identifying extent of contamination for closure and 

remediation activities 

▪ Example: SREL’s Ecotoxicology Program investigated the impacts of ash basin contaminants 

on organisms that occupy the basins
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D-Area Ash Basins

Source: SRNS-RP-2021-03748
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D-Area Ash Basins – Hydrostratigraphy

Source: SRNS-RP-2021-03748



Potentiometric Surface Upper Three Runs



Potentiometric Surface Gordon Aquifer Unit
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Source: SRNS-RP-2021-03748

D-Area Ash Basins – Beryllium
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D-Area Ash Basins – Beryllium

Source: SRNS-RP-2021-03748
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D-Area Ash Basins – pH

Source: SRNS-RP-2021-03748
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Correlations – Water Table Elevation
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Correlations – Specific Conductance



Correlations – Close Proximity Wells
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• DCB 21A and DCB 36A

• 500 feet apart

• Well screens are at the 

same elevation and have 

the same matrix materials

• Different measurements of 

analytes
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Correlations – Close Proximity Wells

Examples of Mixed Results

• Agreement between correlations e.g., Mn vs pH

• Strong correlations, but positive vs negative e.g., Cr vs pH

• Low/No correlation e.g., Se vs pH

• Strong vs weak AND positive vs negative:  Se vs Specific Conductance



Ongoing/Future Work

• Isolate controlling variables for contaminants of interest

▪ PCA, correlation matrices, etc. to identify which geochemical analytes are correlated with 

contaminant concentrations

• Identify wells that allow best characterization of the contaminants over time (e.g., 

using Gaussian Process method)

• Apply Kalman filter technique to estimate contaminant concentrations

• Feasibility of Linking Historical D-Area Investigations with Groundwater Data

▪ Literature search to identify if additional datasets exist and how they might be used
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