Computational Screening & Design of Alkylamine-Functionalized Polymer Sorbents

Surya Prakash Tiwari^{1,2}, Wei Shi¹, Ali Sekizkardes^{1,2}, Jan Steckel¹

This project seeks to screen and design a better polymeramine sorbent, understand CO₂ uptake process by the sorbent at a molecular level, and investigate the effects of water in CO_2 capture, such as CO_2 overall mass transfer and CO_2 uptake.

National Energy Technology Laboratory, U.S. Department of Energy, Pittsburgh, PA 15236, United States, ²NETL Support Contractor, Pittsburgh, PA 15236, United States

Screening of Amines

- ~100 million compounds in PubChem database
- Amines computationally screened based on physical properties and cheminformatics features:
 - ✓ Molecular weight below 300 g/mol
 - \checkmark Must contain either NH₂, or NH, or both
 - \checkmark Number of (NH₂+NH₁)/molecular weight > 0.0199
 - ✓ All amines are unique (repeats removed)
- 11 amines further down-selected
 - \checkmark Solvent accessible surface area (SASA) for each NH₂ amine > 58 $Å^2$ (larger than the largest value for TAEA)
 - \checkmark Summation of the above SASA > 162 Å² (larger that that for TAEA)

- Quantum mechanics calculations were performed on 11 amines to calculate CO₂ reaction free energy (ΔG_{ig}) and enthalpy (ΔH_{ig})
- Three of those amines have more favorable ΔG_{ig} and ΔH_{ig} than TAEA & EN
- The performance of these three theoretically screened amines will be tested in experiments.

Amines	∆ <i>G</i> _{ig} (reaction, ig.298.2 K, 1 bar) (kJ/mol)	∆ <i>H</i> _{ig} (reaction, ig.298.2 K, 1 bar) (kJ/mol)	∆S _{ig} (reaction, ig.298.2 K, 1 bar) (J/mol.K)
Ethylenediamine (EN)	531	485	-154
TAEA	460	401	-198
Screened amine 1	430, 432	368, 372	-208, -201
Screened amine 2	414, 395, 414, 389	328, 312, 339, 306	-288, -278, -252, -278
Screened amine 3	405, 418, 425, 397, 409, 412	344, 353, 370, 330, 353, 346	-205, -218, -184, -225, - 188, -221

Screening of Polymers

- Systematic literature survey was conducted for porous polymers
- A promising porous polymer PIM-EA-TB having surface area greater than PIM-1 has been identified based on synthesizability criteria

Research & Innovation Center

Computationally Testing the Polymer-Amine Sorbent

Tools/methodologies are being developed to test the polymer-amine combination

Snapshot of molecular dynamics simulation of box containing PIM-1-AO-DETA and CO₂

Radial distribution function shows a strong interaction between the O of polymer and H of amine

Amine	PIM-1-AO-Amine interaction energy (kJ/mol)	Distance (Å)
EN	-36.64	1.80
DETA	-36.57	1.84
TAEA	-37.01	1.88

Hydrogen bond strengths calculated between functionalized PIM-1 and three different amines shows that

- All three amines form strong hydrogen bonds with PIM-1-AO
- 2. All three amines will have almost same leaching

Conclusions

- Three amines and four polymers were identified for further study
- Computational tools are being developed to test the polymer-amine sorbents
- Future work will mainly focus on
 - Relationship between the amine structure and CO₂ loading and/or the reaction kinetics of CO₂ uptake
 - Understanding the role of water in the CO₂ capture process
 - Compare computational estimates for CO₂ loading performance ranking and investigation of amine-polymer stability

References

- Miles, A., Wilfong, W. C., Hopkinson, D., & Sekizkardes, A. K. (2020). Alkylamine Incorporation in Amidoxime Functionalized Polymers of Intrinsic Microporosity for Gas Capture and Separation. Energy Technology, 8(10), 2000419.
- Sekizkardes, A.; Kusuma, V.; Culp, J.; Muldoon, P.; Hoffman, J.; Hopkinson, D. Single Polymer Sorbent Fibers for 2. High Performance and Rapid Direct Air Capture. ChemRxiv 2022.