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Workflow [ Results and Discussions ]
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5 || compie md maining g—{ modd } %redictedmal/ | * The workflow is useful for preparing samples and training model for flow systems regardless of complexity.
e Ntulalulelutels B e ' * Pressure and saturations predictions (blind) of first 12 months can be accepted with higher accuracy.
* Precursor of the development of an integrated workflow for data-driven model using real field data.
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