Strategies for Machine Learning-Based Segmentation of Geologic CT Data

Paul Holcomb^{1,2}, Prakash Purswani³, Lingyun Kong⁴, Xue Yu⁴, Shane Butler⁴, Manika Prasad⁵, Jyoti Behura⁵, Kurt Livo⁵, Dustin Crandall ¹U.S. Department of Energy, National Energy Technology Laboratory, Morgantown, WV; ²NETL Support Contractor, Morgantown, WV; ³Pennsylvania State University, University Park, PA; ⁴Energy & Environmental Research Center, University of North Dakota, Grand Forks, ND; ⁵Colorado School of Mines, Golden, CO

Motivation

- Computed Tomography (CT) scanning enables µm scale interrogation of rock cores
- Segmentation of CT image features is necessary for quantitative analysis of these samples
- Manual segmentation is time consuming
- Machine learning (ML) methods can overcome this bottleneck
- Rapid CT segmentation is required for inclusion of porescale properties in up-scaled flow models

Research Goal

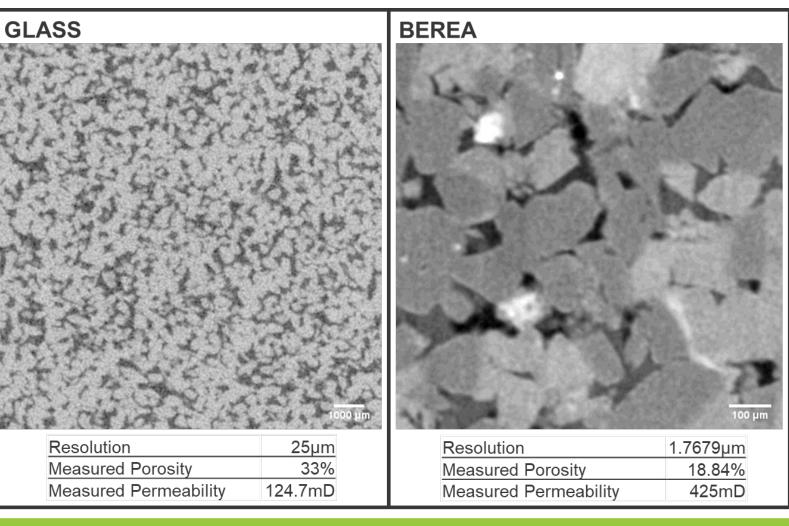
Compare multiple supervised and unsupervised ML techniques to a baseline produced collaboratively using user driven random forest classification techniques with iLastik. Use this base line segmentation to evaluate different techniques for accuracy and processing time.

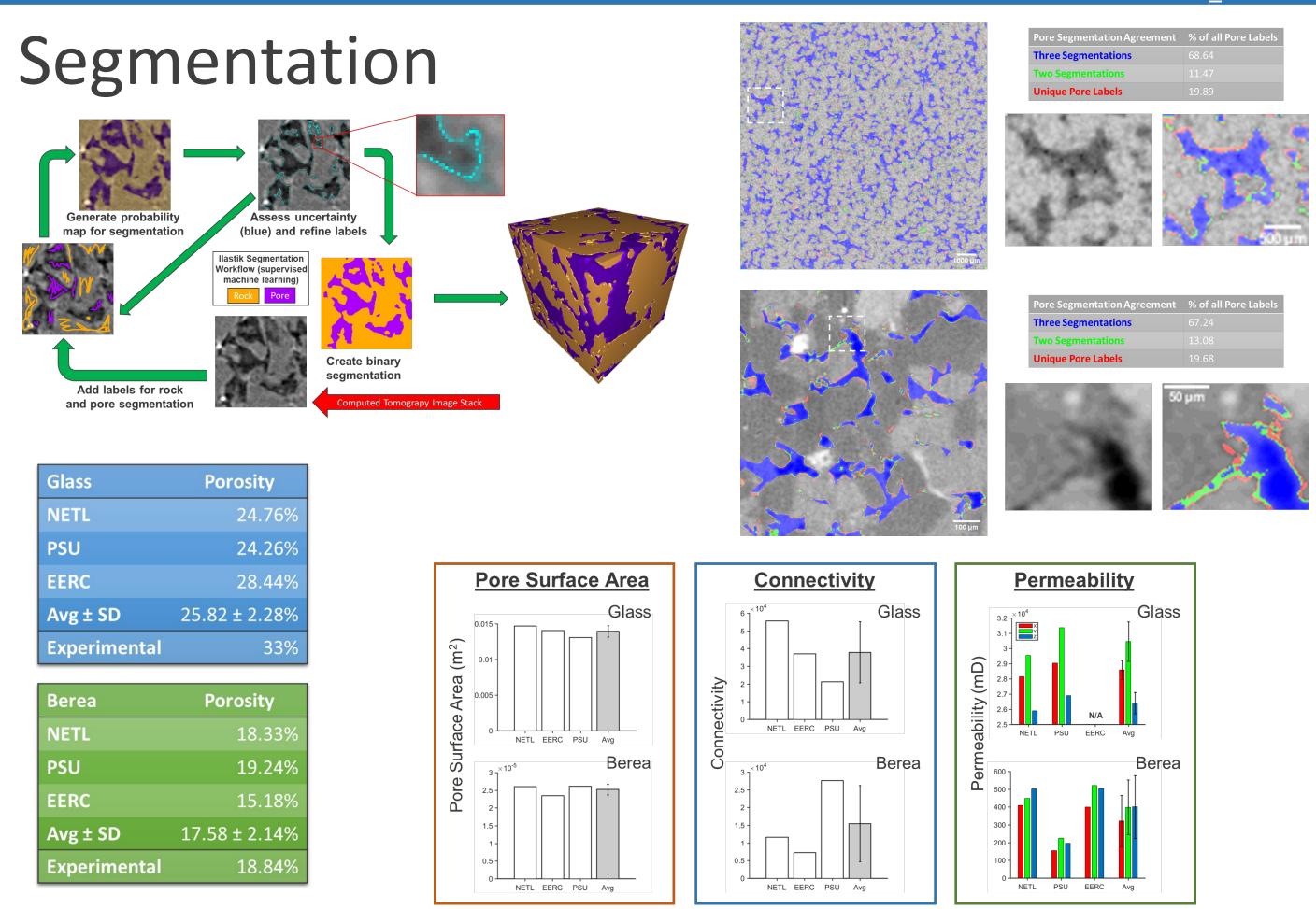
Test Cases

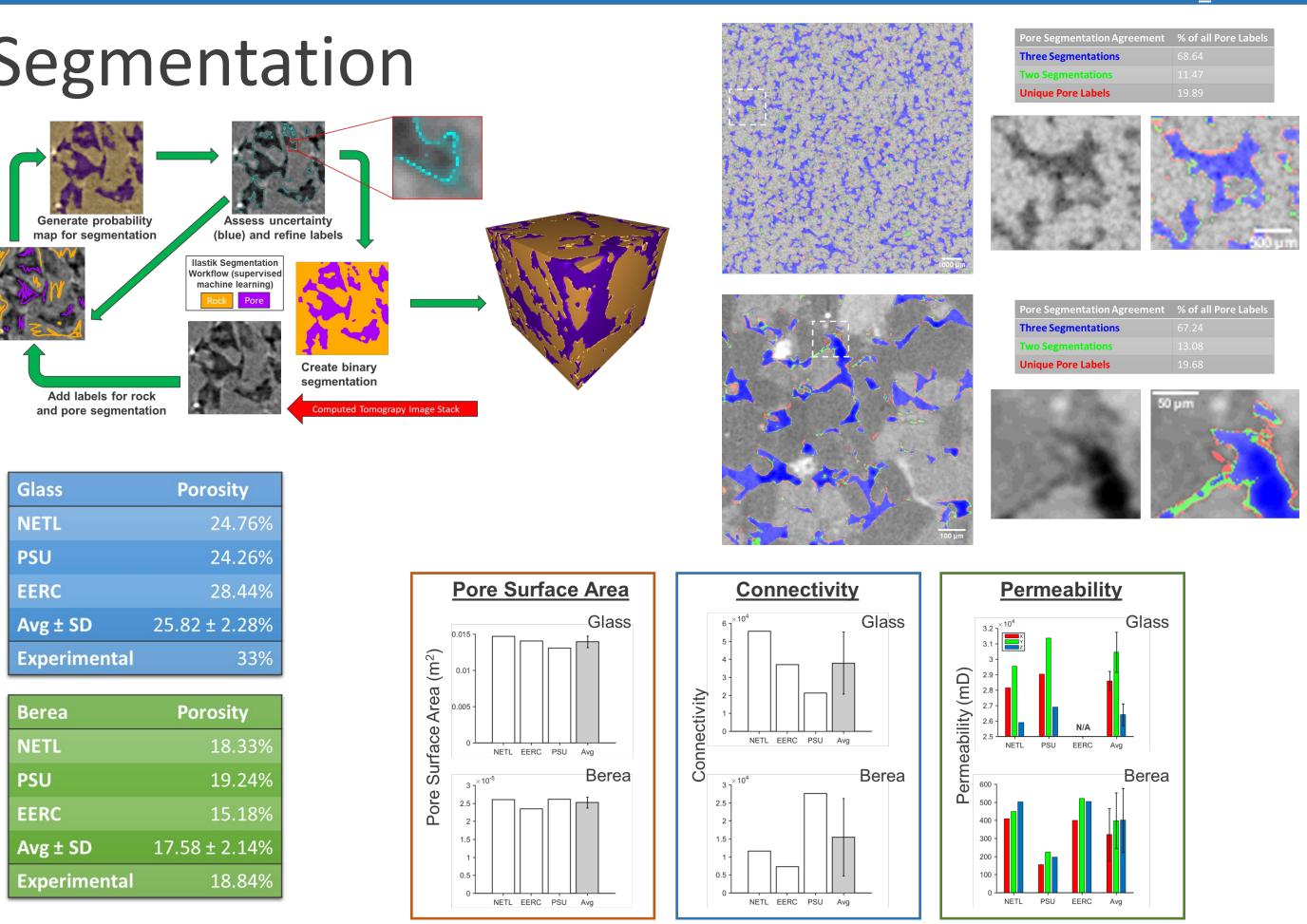
- 512-pixel image cubic volumes
- Two different CT scanners used to image cores with vastly different properties and heterogeneities
- Two samples selected for initial analysis
- Homogenous Sintered Glass
- Heterogenous Berea Sandstone

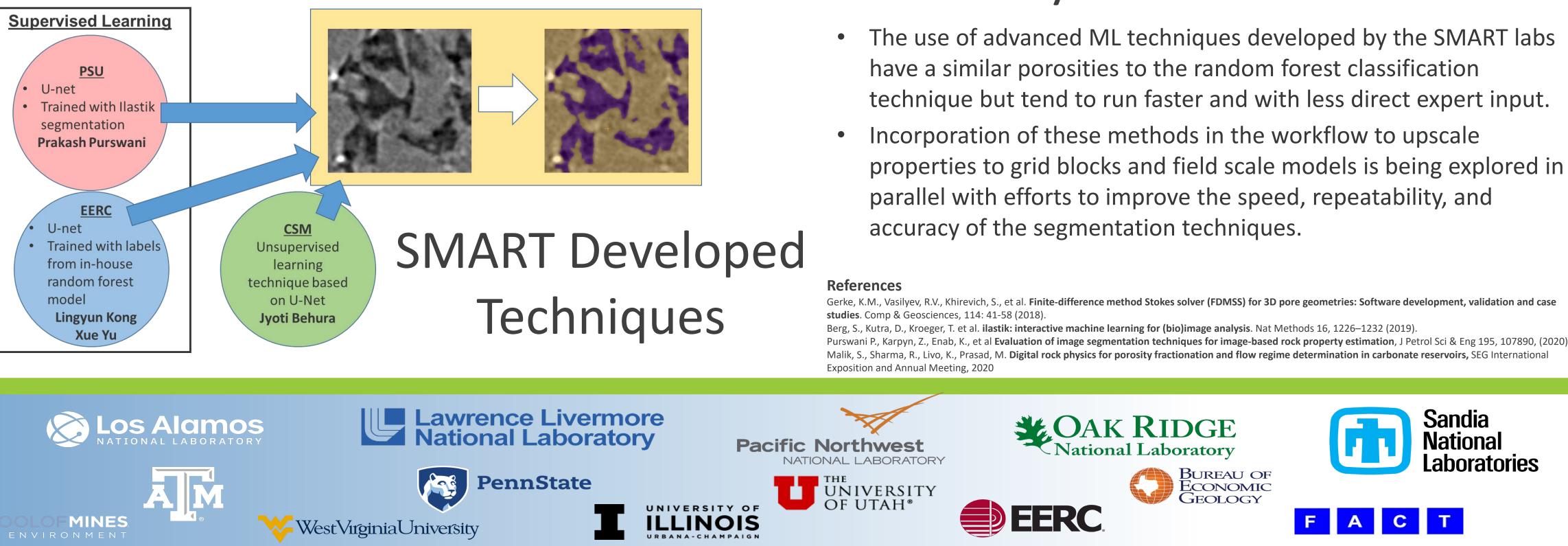
U.S. DEPARTMENT OF

ENERGY

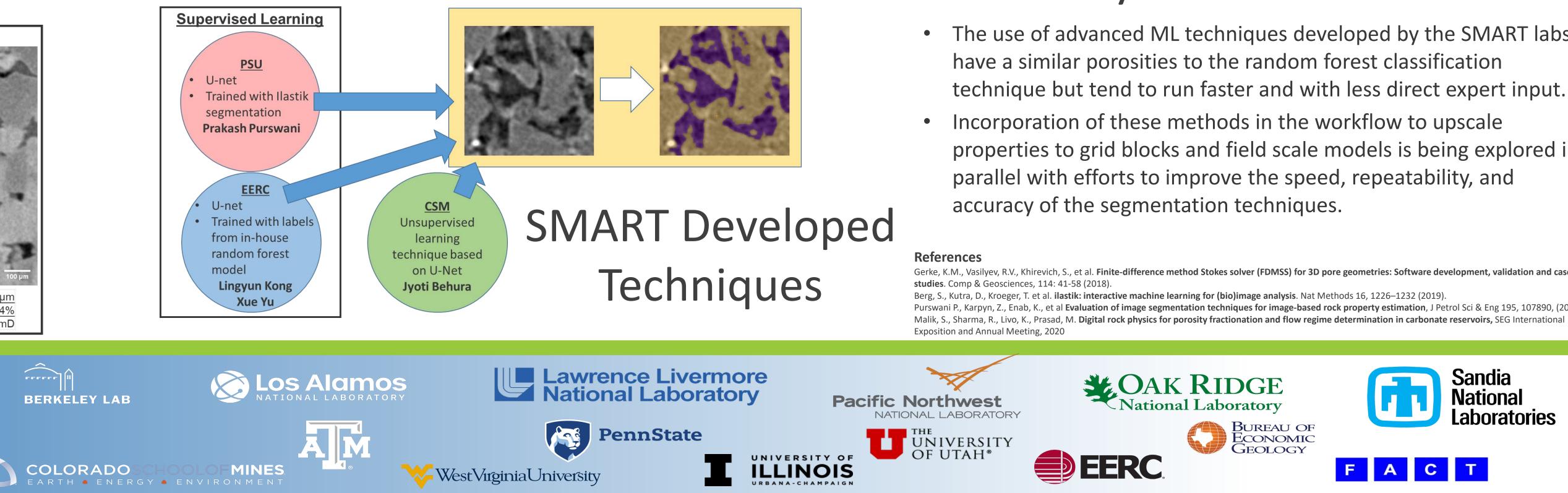








CMU



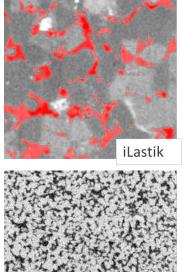
• Pore labeling varied between iLastik segmentations performed across labs, with porosity agreement ~70% between all three segmentations

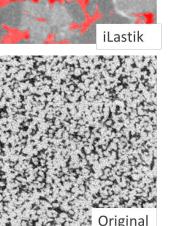
Connectivity varied more significantly in segmented volumes, and the resultant permeability estimates using an open-source Finite-difference method Stokes solver (FDMSS) highlights this variability

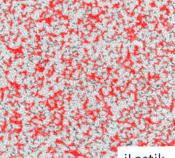
17.76%

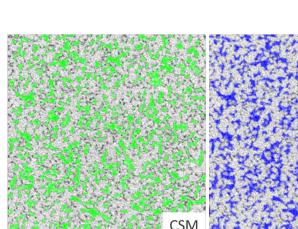
Science-informed Machine Learning to Accelerate Real Time (SMART) Decisions in Subsurface Applicat

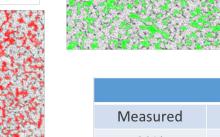
Lab Comparisons

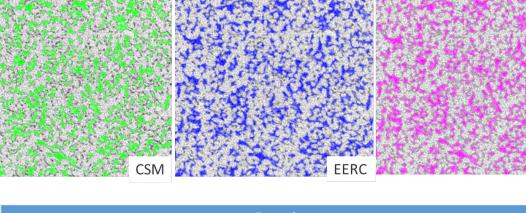




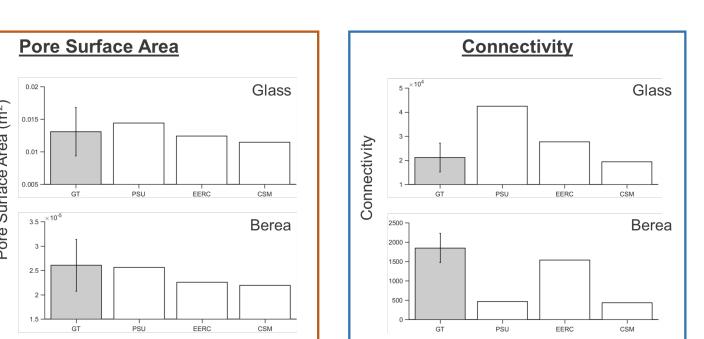








Porosity				
Measured	iLastik	CSM	EERC	PSU
33%	28.43%	22.86%	30.58%	25.07%



Summary

properties to grid blocks and field scale models is being explored in

Vasilyev, R.V., Khirevich, S., et al. Finite-difference method Stokes solver (FDMSS) for 3D pore geometries: Software development, validation and case