Economic Analysis of Potential for CCUS in the Gulf of Mexico

Timothy Grant,¹ Chris Nichols,¹ Justin Adder,¹ Peter Balash,¹ Sarah Forbes,² Martin Webler,¹ Luciane Cunha¹ National Energy Technology Laboratory¹, U.S. Department of Energy² Research & Innovation Center

network

injection

for offshore CCUS growth

metered storage hub system

individual stakeholders

Recommendations

Explore solutions promoting an ecosystem

Integrated infrastructure - reduce capital

costs for projects and provide EOR/storage operators with a "pay as you go" service using a toll-based offshore transportation

Supply pooling – reduce the risk of offtake for capture operators and risk of long-term contracts to EOR/storage operators with a

Complementary incentives – align goals and drive collaboration between capture operators and EOR/storage operators by designing a <u>supply chain</u> incentive program that targets pain points of the

Flexible storage – allow EOR/storage operators flexibility to transfer between permitted EOR to storage operations depending on how a field responds to CO₂

Defining regulations – develop monitoring and liability regulations for federal waters that allow storage programs for power and industrial sources and provide the ability of EOR/storage operators to assess the risk

Summary

Offshore CCUS economic viability requires a favorable market environment, including

Storage – tax credits	EOR – oil prices >
of $75/tonne of CO_2$,	\$90/bbl, capture sites
storing 2 million tonnes	within 25 miles of
CO ₂ /year, 30%	coast or CO ₂ pipeline
reduction in capture	deep water fields
technology costs	within 100 miles of
	shore, reserves > 40
	million bbls

Roadblocks extend beyond economics for CCUS supply chain

Storage – lack of	EOR – uncertainty of					
federal offshore	field performance					
regulations detailing	limits operator					
safety &	willingness to commit					
environmental	to long-term					
requirements, timing is	partnerships					
aggressive to qualify						
for incentives						
Start with Brownfields utilizing existing						

Start with Brownfields utilizing existing knowledge of fields and estimated financials

Storage – ability to	EOR – brownfield
leverage existing	financials on par wit
infrastructure, reduces	greenfield, but
exploration &	greenfield bears
development costs	significantly more ris

Offshore CCUS Success

 Supply chain – optimized, and incentives aligned

 Infrastructure scaling – integrated transportation networks

 CO2 supply pooling – storage hubs to reduce supply uncertainty

 Cost reduction – improved capture technology efficiency

 Incentive matching – clear regulatory definitions & benefits provided throughout supply chain

Supply Chain for Offshore CCUS

Biggest supply chain costs - CO₂ capture through operations

Cap	oture		Transportation			Operation		
Reservoir Identification & Concept Selection	CO ₂ Capture (Onshore Only)	Transport (Onshore)	Coastal Staging	Transport (Offshore)	CO ₂ Injection -	CO ₂ Monitoring	Oil Processing	
Subsurface Analysis & Modeling (seismic survey, well log analysis, etc.) Exploration & Appraisal (exploratory wells, petrophysical	Capture & Process (equipment, purification) Transportation Prep (compression, monitoring, CO ₂ processing)	Pipeline Construction (permitting, pipeline construction) Transport (CO ₂ processing facilities, compression stations, monitoring)	Compression Station (compression equipment) Storage Hub (land acquisition, s storage tanks, monitoring)	Pipeline Construction (permitting, pipeline construction) Shipping (vessel CAPEX)	Surface Infrastructure Mods (platform expansion/ addition, injection and production equipment) Subsurface Infrastructure (well workovers, new wells, subsea injection)	Surface Monitoring (instrumentation, reporting, fugitive gas monitoring) Subsurface Monitoring (monitoring wells)	Oil Separation/ Processing Operations (OPEX only) CO ₂ Recycling Operations (OPEX only)	
analysis, etc.) Concept Selection & Design							Enhanced Oil Recovery (EOR) Only	
Operation & Maintenance								

Most Economic Supply Chain Model Results

Changing one variable and holding others constant - Ceteris Paribus

Brownfield – State Shallow Water CO₂ Storage Sensitivity

Brownfield storage – leverages existing infrastructure & data resources to offset supply chain costs

• Increased Rate of CO₂ Injection has the most significant impact on Net Present Value

Greenfield – Federal Shallow Water EOR Sensitivity

Greenfield EOR - economical viability is reliant on combinations of market factors

- Increased Oil Price has the most significant impact on Net Present Value
- Increased Oil Recovery over life of project has the most significant impact on Cost per Barrel

Jon Pesek, Merril Stypula, Austin DeMordaunt, Connie Zaremsky

Disclaimer: This study was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereaf, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacture, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Science & Engineering To Power Our Future

*"A" is the base-case scenario