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ABSTRACT

Geologic Carbon Storage (GCS) is a viable option for storing unwanted CO, in the subsurface. For this process to be widely established, it is necessary to monitor and confirm that the injected CO, stays where it was intended. Effective monitoring network design is not a one-size-
fits-all problem. The selection of monitoring technologies depends on the monitoring objective. Geophysical methods provide valuable information about subsurface changes, especially when large areas need to be monitored or when direct measurements are impossible or not cost
effective. Understanding the techniques' ability to identify unwanted changes in the system is important for choosing appropriate system monitoring to ensure the protection of the environment and inform decision-making about risk acceptability and site closure requirements.

The driving forces in designing and evaluating the optimized geophysical monitoring plan are (1) containment assurance and possible unwanted CO, migration outside the main storage reservoir during the injection period, (2) cost-effective detection of possible unwanted CO,
migration from the storage reservoir in the post-injection and post-closure phase, or both. Understanding the sensitivity and establishing detection thresholds of various geophysical methods is central to designing monitoring schemes. Due to cost considerations, especially for
long-term monitoring, less expensive techniques play a role when designing monitoring networks. A site risk assessment would identify areas where monitoring costs would be less than possible mitigation liabilities from an unwanted event or public assurance. We illustrate how
complementary techniques could be used in a cost-effective monitoring design using a scenario of GCS in brine-bearing formations and seismic, gravity, and electromagnetic methods.
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