

FWP-FEAA 384 Intensified, Flexible, and Modular Carbon Capture Demonstration with Additively Manufactured Multi-Functional Device

Costas Tsouris, Josh Thompson, Gyoung Jang, Jim Parks Manufacturing Science Division, Oak Ridge National Laboratory

National Energy Technology Laboratory 2022 Carbon Management Project Review Meeting

August 15-19, 2022

ORNL is managed by UT-Battelle, LLC for the US Department of Energy

Project Overview

- Funding provided by DOE-FECM: \$1.5M
- Overall Project Performance Dates: January 1, 2021 – December 31, 2022 (extension will be requested)
- Previous Project: FWP-FEAA375

January 1, 2020 – December 31, 2020 Focused on validation of additively manufactured intensified device for enhanced carbon capture using a low aqueous solvent

Motivation for this Project

- Opportunities for additive manufacturing to improve carbon capture
- Intensified packing device for flexible, modular carbon capture from point sources
 - Intensified device enhances mass transfer, just like commercial packing, and allows a third fluid (coolant) to remove the heat of reaction between CO_2 and amines
- Demonstrate pathway to scalability for the intensified device

Technology Background: How the technology is envisioned to work: <u>A Brief Review</u>

Absorption/Desorption System at the National Carbon Capture Center (NCCC)

Column A

Intensified

Devise

 $2MEA + CO_2 \rightleftharpoons MEAH^+ + MEACOO^- (+ 79-100 \text{ KJ/mol}) \text{ (Exothermic)}$

CAK RIDGE National Laboratory <u>Motivation:</u> Intrastage cooling with intensified devices may have economic and operational advantages over interstage cooling

Technology Background: Intensified Device Concept

Technology Background: Intensified Device Design & Manufacturing

(a) Create profile of packing cross section, (b) extrude segment of packing at 45 degrees,
(c) pattern into two parallel panels with gap for fluid, (d) mirror and rotate the adjacent panels,
(e) pattern into a full packing, (f) cut into a cylinder, (g) create a manifold for coolant to flow into heat exchanger, (h) create inlet and outlet ports, (i) manufacture from CAD to part.

Technology Background: Intensified Device Installation on Column

8-inch diameter column

Technology Background: Intensified Device Installation on Column

8-inch diameter column

Technology Background: Intensified Device <u>Demonstration for MEA</u>

Air Flow Rate (LPM)	CO ₂ Flow Rate (LPM)	CO ₂ Conc. (%)	Molar Capture Rate Before Cooling (mol/min)	Molar Capture Rate After Cooling (mol/min)	Fractional Increase (%)	Capture Efficiency (%) (Before → After Cooling)					
810	90	10	2.24	2.30	2.7	59.9 → 61.2					
510	90	15	2.75	2.90	5.5	73 → 77					
360	90	20	2.95	3.29	11.5	$78 \rightarrow 88$					
264	90	25	3.52	3.57	4.3	94 → 98					
360	40	10	1.38	1.45	5.1	83 → 87					
360	63.5	15	1.53	1.77	15.7	58 → 67					
360	90	20	2.95	3.29	11.5	$78 \rightarrow 88$					
360	120	25	3.07	3.28	6.9	62 → 66					
	Solvent	flowrat	e.321PM	Solvent input temperature: 70 °C							

• Miramontes, E.; Jiang, E.A.; Love, L.J.; Lai, C.; Sun, X.; Tsouris, C. Process Intensification of CO₂ Absorption Using a 3D Printed Intensified Packing Device, AIChE J. e16285, (2020).

Technology Background: Intensified Device Demonstration for LAS

	Solvent	Solvent	Air	CO ₂	CO ₂	CO ₂ output	CO ₂ output	Capture efficiency	Fractional	Feed	Average Temp.		
Exp.	Condition	(LPM)	(SLPM)	(SLPM)	Amounf (%)	before cooling (%)	dffer cooling (%)	(%) (before → after)	improvement (%)*	femp. (°C)	No- cooling	Cooling	
1	Pristine	3.26	510	90	13.8	2.21	0.64	84 → 95.4 (11.4 ↑)	13.5	59	60.7	52.2	
2	Pristine	3.26	510	90	14.0	1.95	0.47	86 → 96.6(10.6 ↑)	12.3	52	59.6	50.4	
3	Pristine	3.26	510	90	13.8	1.61	0.64	88.3 → 95.4 (7.1 ↑)	8.0	45	58.6	50.0	
4	1 st Regen.	3.26	510	90	14.7	3.18	1.57	78.4 → 89.4(11.0 ↑)	14.0	41	54.5	45.3	
5	2 nd Regen	3.26	608	107	13.1	3.75	2.23	71.3 → 82.9(11.6 ↑)	16.3	44	55.2	46.8	
6	2 nd Regen + DI H ₂ O(5L)	3.26	608	107	13.0	2.94	2.08	77.4 → 84.0(6.6 ↑)	8.5	44	55.4	46.9	
7	3rd Regen	3.26	425	75	13.3	1.19	0.67	91.1 → 95.0(3.9 ↑)	4.3	41	52.8	44.9	
8	3 rd Regen	2.82	510	90	13.1	2.75	1.75	79.1 → 86.7(7.6 ↑)	9.7	41	53.8	46.6	
9	4 th Regen	3.26	353	62	13.3	0.79	0.44	94.0 → 96.6(2.6 ↑)	2.8	41	49.8	39.7	
10	4 th Regen	3.65	510	90	12.8	2.16	1.13	83.2 → 91.2(<mark>8.0</mark> ↑)	9.7	41	52.7	44.2	
11	5 th Regen	2.39	510	90	13.1	5.85	4.71	55.3 → 64.0(<mark>8.7</mark> ↑)	15.7	41	52.3	45.5	
12	5 th Regen	2.82	510	90	13.0	4.92	3.25	62.2 → 75.0(12.8 ↑)	20.7	41	54.2	46.4	
13	6 th Regen	3.26	510	90	13.2	5.74	3.86	56.7 → 70.9(14.2 ↑)	25.1	41	53.5	45.0	
14	6 th Regen + DI H ₂ O(5L)	3.26	510	90	13.1	5.33	4.73	59.3 → 63.9(4.6 ↑)	7.8	41	52.1	43.5	

CAK RIDGE

10

LAS was provided by RTI International, thanks to Marty Lail

Overall Project Objectives for FEAA 384

- Design and construct a larger-scale column (Column B) than the one previously tested (Column A) to:
 - Scale up CO₂ capture from 0.1 t/day to 1 t/day
 - Demonstrate 15% enhancement in CO₂ capture with a 3D printed intensified device for aqueous and low-aqueous amine-based capture at realistic operating conditions
 - Demonstrate that Column B can be constructed with modular packing elements and intensified devices
 - Demonstrate that Column B can effectively capture CO₂ from different CO₂ gas compositions and during process transients, with capacity ramping up and down anticipating the intermittent nature of renewable energy

Technical Approach/Project Scope Project Schedule: Two-year project

- Task 1.0 Project Management and Planning (1-24 Months)
- Task 2.0 Design, Evaluation, and Construction of Column B based on Results from FEAA375 (1-12)
- Task 3.0 Advanced Manufacturing and Core Metrics Testing of Intensified Device for Column B (1-15)
- Task 4.0 Using NTRC Engine Combustion Exhaust to Simulate Various Flue Gas Compositions (1-15)
- Task 5.0 Test Plan Development for Subsequent Tasks (13-15)
- Task 6.0 Aqueous Solvent Capture with Simulated Coal-Fired Power Plant Flue Gas (13-16)
- Task 7.0 Aqueous Solvent Capture with Simulated Natural Gas-Fired Power Plant Flue Gas (17-19)
- Task 8.0 Aqueous Solvent Capture under Process Transients (20-21)
- Task 9.0 Column B Modification and Demonstration of Modular Capture with Low-aqueous Solvent (22-24)
- Task 10 Collaboration with CCSI² on Modeling of Process Intensification with Column B Results (1-24)

Progress and Current Status of Project Task 1.0 – Managing Design and Construction of CO₂ Capture Column

Solvent Inventory Management

13 **CAK RIDGE** National Laboratory

Task 2.0 – Design Evaluation and Construction of Column B (1-12) Modeling Framework:

14 **CAK RIDGE**

Modeling Framework

Model validated with published CO₂ solubility and pilot data

15 **CAK RIDGE** National Laboratory Thompson, Tsouris, "Rate-Based Absorption Modeling for Post-Combustion CO₂ Capture with Additively-Manufactured Structured Packing", Ind. Eng. Chem. Res., **2021**, 60(41), 14845-14855.

Modeling MEA w/Intrastage Cooling

- Simulation of intrastage cooling with device shows good agreement with experiments from Miramontes *et al.* (2020)
 - CO_2 capture difference: all <= 5%
- CO₂ capture improvement and temperature profile agreement suggest modeling framework for heat transfer is accurate in predicting device performance

Task 3.0 – Advanced Manufacturing and Core Metrics Testing of Intensified Device for Column B (1-15) Scale-up from 8" to 12" Diameter

• New unit cell geometry: Column A

• Added flanges for device integration with the column

ŁOAK RIDGE

17

• Added supports for printability

Features of Intensified Device

8 **CAK RIDGE** National Laboratory

Scaled-Up Intensified Devices

12-inch diameter, 16-inch height

August 18, 2022

Process Flow Diagram for Column Design

Process flow and equipment essential to proper design around absorption column

Improvements in High Bay, Laboratory, and Mezzanine Areas

Modular Column Design

Modular column design provides flexibility in testing packing locations and gas/liquid axial sampling

23 **CAK RIDGE** National Laboratory

Task 4.0 – Using NTRC Engine Combustion Exhaust to Simulate Various Flue Gas Compositions (1-15)

- Feed gas will be generated with natural gas generator set
 - 100 kW generator
 - 9L natural gas engine
 - Electricity dissipated by load bank
- Exhaust gas generation:
 - Up to 1.4 tons CO_2/day
 - Water dew point and temperature managed by heat exchangers

Genset installed in the Mezzanine area

Commercialization

- Need to demonstrate a path to scale-up
- Developed plan and looking forward to implementing it to demonstrate scalability in a future project
- For small-diameter columns, the intensified packing will be a section of the column
- For larger columns, it will just be a part of the column packing

Summary

- Modeling work was used for column design
 - Modeling framework developed was extended to other research projects at ORNL
- Project delays related to supply chain
- Delays impacted project schedule, anticipated to be up to two quarters
- Column construction is expected to be completed in August of 2022
- Hydraulic testing will follow, and then heat & mass transfer experiments

Future Work

- CO₂ capture experiments using aqueous MEA
- CO_2 capture experiments using LAS (RTI)
- Performance evaluation under transient conditions
- Scale-up & TEA Future project (long term)

- Tasks 6-9 (short term)

Publications from FEAA384

- Thompson, Tsouris, "Rate-Based Absorption Modeling for Post-Combustion CO₂ Capture with Additively-Manufactured Structured Packing", Ind. Eng. Chem. Res., 60, 14845, (2021). <u>https://doi.org/10.1021/acs.iecr.1c02756</u>
- Tarancon, A., et al. "2022 Roadmap on 3D Printing for Energy," JPhys Energy, 4, 011501 (2022). <u>https://doi.org/10.1088/2515-7655/ac483d</u>

Acknowledgments

- Office of Fossil Energy and Carbon Management
- RTI International and Marty Lail
- David Lang
- Lynn Brickett

🛎 OAK RIDGE

27

The Whole Project Team

Research Team:

Costas Tsouris, PI

Joshua Thompson

Gyoung Jang

Jim Parks

Coordination, Construction, and Safety Team:

Scott Curran

Scott Palko

Jonathan Willocks

Jason Case

Lonnie Love

Charles Finney

Xin Sun, Consultant

Additive Manufacturing Team:

Amiee Jackson

Appendix

Project Schedule and Completion

August 2022

		FY: 2	1	22				23			% Completed
Timeline in Quarters				01	02	03	04		01	02	/ Completed
Task 1.0 – Project Management and Planning											
Task 2.0 – Design Evaluation and Construction of Column B based on Results from Task 3.0 in FWP-FEAA375								Π			70
Subtask 2.1 Design Evaluation, Equipment Design and Sizing											100
Subtask 2.2 Column B Construction											75
Subtask 2.3 Instrumentation of Column B											90
Subtask 2.4 Initial Column Evaluation											0
Task 3 – Advanced Manufacturing and Core Metrics Testing of Intensified Device for Column B											50
Subtask 3.1 Advanced Manufacturing of Intensified MellaPak 250 Device for Column B Geometry											100
Subtask 3.2 Core Metrics Testing and Validation of the Intensified MellaPak 250 Device								Π			0
Task 4 – Using NTRC Engine Combustion Exhaust to Simulate Various Flue Gas Compositions								Π			90
Subtask 4.1 Engine, Fuel, and Load System Selection and Configuration								Π			100
Subtask 4.2 Design and Installation of Auxiliary Systems to Supplement CO ₂ , Flow, and/or Temperature Control								Π			90
Task 5.0 – Test Plan Development for Subsequent Tasks											
Task 6.0 – Aqueous Solvent Capture with Simulated Coal-Fired Power Plant Flue Gas											
Subtask 6.1 Baseline Experiments with Commercial Packing											
Subtask 6.2 Experiments with Intensified MellaPak 250											
Task 7.0 – Aqueous Solvent Capture with Simulated Natural Gas-Fired Power Plant Flue Gas											
Subtask 7.1 Baseline Experiments with Commercial Packing											
Subtask 7.2 Experiments with Intensified MellaPak 250											
Task 8.0 – Aqueous Solvent Capture under Process Transients											
Subtask 8.1 Baseline Experiments with Commercial Packing											
Subtask 8.2 Experiments with Intensified MellaPak 250											
Task 9.0 - Column B Modification and Demonstration of Modular Capture with Low-aqueous Solvent											
Subtask 9.1 Modify Column B to Demonstrate Modular Design											
Subtask 9.2 Baseline Experiments with Commercial Packing											
Subtask 9.3 Experiments with Intensified MellaPak 250											
Task 10 - Collaboration with CCSI ² on Modeling of Process Intensification with Column B Results											

30

Supply chain delays since Jan 2022 have resulted in ~2-quarters delay of the project

Technical Approach/Project Scope

- Scale up CO_2 capture rate by a factor of 10 from Column A to Column B
- Scale up intensified device
- Demonstrate enhanced capture by aqueous MEA using intrastage cooling
- Demonstrate enhanced capture by LAS using intrastage cooling
- Demonstrate modularization with one or more packing elements for each module
- Demonstrate smooth operation with variable gas feed flowrate and CO₂ concentration

