SRI International[®]

Inventing a better future together

DEVELOPMENT AND TESTING OF A HIGH-TEMPERATURE PBI HOLLOW-FIBER MEMBRANE TECHNOLOGY FOR PRE-COMBUSTION CO₂ CAPTURE

Project Review (FE0031633) Presented by Elisabeth Perea, SRI International Principal Investigator: Indira Jayaweera, SRI International August 19, 2022

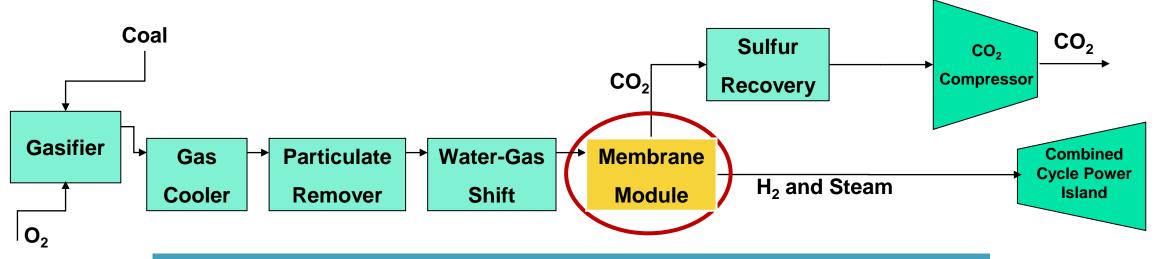
Project Team

Enerfex, Inc.

Energy Commercialization, LLC

SRI International°

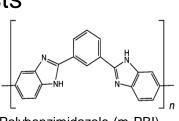
Disclaimer


This presentation includes an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Technology Background

SRI International®

Membranes for Pre-Combustion CO₂ Capture


Advantages of High-Temperature Membranes for Separation of CO₂

Note: PBI hollow fiber membrane (HFM) is a H_2O and H_2 transporting membrane

Advantages of Membrane-Based Separation

- Reduced costs for syngas cooling
- Reduced CO₂ compression costs
- Emission free, i.e., no solvents
- Decreased capital costs
- Low maintenance
- Modular

m-Polybenzimidazole (m-PBI)

Characteristics of PBI Membranes

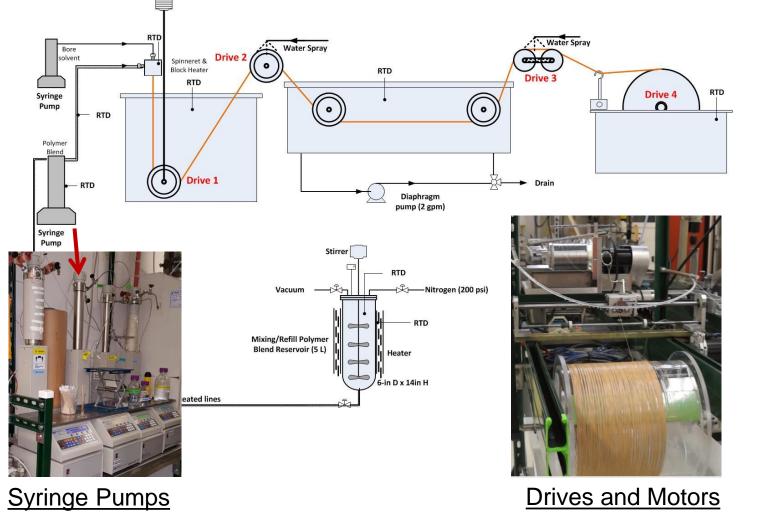
- Attractive combination of throughput (permeance) and separation (selectivity)
- Thermally stable up to ~ 300°C and sulfur tolerant
- Tested up to 225°C with simulated gases and with real syngas

Preliminary TEA Developed by Enerfex

Preliminary TEA has been updated to correspond to Rev. 4 of Cost & Performance Baseline document

% Increase in Cost of Electricity (COE)

	Case Name	IGCC-B1A Baseline No Capture	IGCC-B5B ¹ Baseline CO ₂ Capture	SRI PBI Membrane CO ₂ Capture			
	CO ₂ removal	No	Selexol	PBI membrane			
	CO ₂ purification		No	Yes			
	Sulfur removal	Sulfinol		Selexol			
	Performance and Economic Summary						
e	H ₂ /CO ₂ Selectivity	n/a	n/a	46			
	H ₂ GPU	n/a	n/a	215			
	CO ₂ capture	n/a	95.18%	89.12%			
	CO ₂ purity	n/a	99.08%	95.80%			
	H ₂ recovery	n/a	99.46%	99.04%			
	HHV plant efficiency	43.00%	33.70%	34.47%			
:	LHV plant efficiency	44.60%	35.00%	35.74%			
	COE w/o T&S (\$/MWh)	\$105.80	\$144.20	\$135.39			
	COE w/ T&S (\$/MWh)	\$105.80	\$152.30	\$143.49			
	% Increase in LCOE	0.00%	43.95%	35.63%			


SRI International°

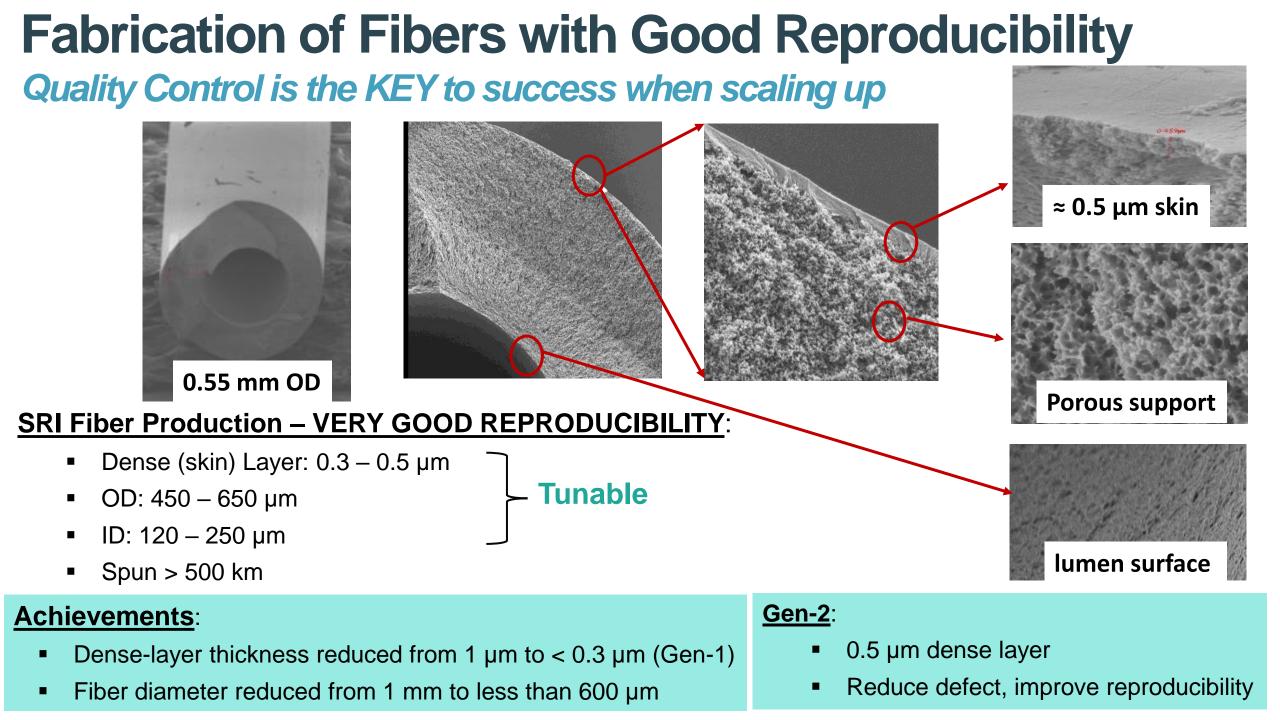
^[1] Cost and Performance Baseline for Fossil Energy Plants Volume 1: Bituminous Coal and Natural Gas to Electricity, Rv4-1, September 24, 2019

© 2022 SRI International. All Rights Reserved.

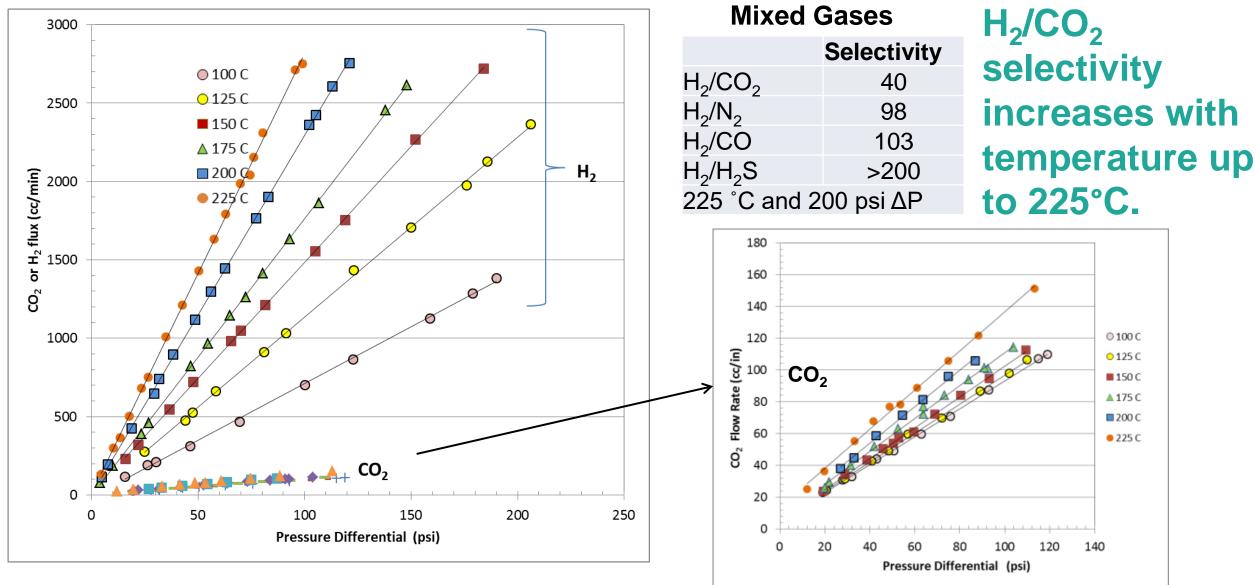
SRI Fiber Spinning Lines

1st line installed in 2015 2nd line installed in 2019

Fiber Optimization:


- Air gap
- Solvents
- Non-solvents
- Roller speed __

Wall thickness Pore size Substructure Dense layer thickness


Variety of Applications:

- Gas Separations¹
- Reverse Osmosis (RO)²
- Ultra Filtrations (UF)³

Xiao et al. (2018), Membranes, 2018, 8(4), 113;
 Wales et al. (2021), Membranes, 2021, 11(6), 430;
 Xiao et al. (2021), Desal and Water Treatment, 2021, 69-78, 229

PBI Fiber Withstands High Pressures & Temperatures

© 2022 SRI International. All Rights Reserved

[9]

SRI International

0 100 C

0125 C

150 C ▲ 175 C

200 C

225 C

Critical Asset: Membrane Testing Skid Installed and Tested at the NCCC

Photograph of the skid installed at the NCCC (April 2017)

- Test campaign at NCCC conducted in April 2017 (50 kWth scale)
- Skid was removed from the host-site and returned to SRI in March 2018 for inspection and modification
- Upgraded skid is used in current work

Sample test matrix

Test Parameter	Range	Unit
Temperature	80 to 215	О°
Pressure	50 to 170	psig
Gas composition	Variable	slpm
Stage cut	0.2-0.7	
H ₂ in syngas	12 to 50	%
CO ₂ in syngas	5 to 40	%

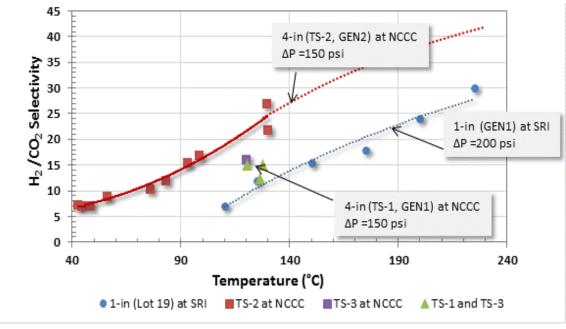
600 hours of performance data collected from PBI skid at NCCC

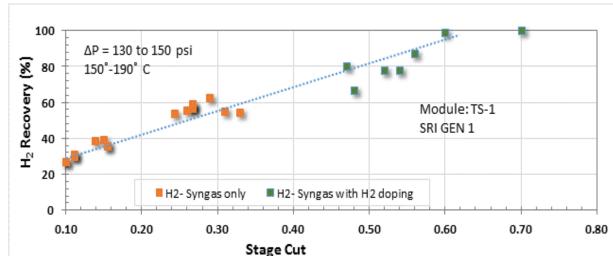
© 2022 SRI International. All Rights Reserved.

SRI International

Test Results at NCCC

Air-blown Gasifier


- + Tunable fiber spinning process can be tailored to higher flux (GEN-1) or higher selectivity (GEN-2)
- + Modules tested at NCCC:
 - Membrane element TS-1 consisting of SRI GEN-1 fibers (GPU~150, H₂/CO₂ selectivity ~ 25 at 150°C) for ~ 500 hr
 - Membrane element TS-2 consisting of SRI GEN-2 fibers (GPU ~ 100, H₂/CO₂ selectivity ~ 40 at 200°C, 200 psi) for ~ 48 hr


Measured H_2 and CO_2 permeances at the NCCC for the TS-2 (GEN-2) module at varying temperatures under a pressure differential of 145 to 155 psi.

© 2022 SRI International. All Rights Reserved.

[11]

Comparison of measured H₂/CO₂ selectivity for GEN-1 and GEN-2 modules

Observed hydrogen recovery with varying stage cuts at temperatures 150°–190°C and pressure differentials of 130-150 psi for the syngas-only condition and for syngas doped with H₂

Current Project Details

SRI International[®]

Project Budget and Team for DE-FE0031633

Cooperative agreement grant with U.S. DOE Period of Performance:

- BP1: 10/1/2018 to 03/31/20
- BP2: 04/01/20 to 06/30/22
 - Expecting modification to PoP

Funding:

- U.S. Department of Energy: \$2.007 million
- Cost share: \$0.505 million (20.1%)
- Total: \$2.512 million

NETL Project Manager:

- Krista Hill
- Andrew Jones (former)

NETL

- Funding and technology oversight
 SRI
- Gen-2 PBI membrane Spinning
- Module fabrication
- Skid installation & testing
 PBI Performance Products, Inc.
- PBI Dope and industry perspective Enerfex, Inc.
- Membrane system modeling and TEA
 Energy Commercialization
- Commercialization analysis
 UKy CAER
- Gasifier facility test site

Project Objectives

- Demonstrate that PBI based hollow fiber membranes provide a pathway to achieving DOE's pre-combustion capture targets
 - Targets: 90% CO2 capture and 95% purity
 - >99% H2 recovery
 - 30% reduction in COE
 - Field test fiber skid (50 kWth) with actual syngas feed stream from an OXYGEN BLOWN gasifier
 - Evaluate Techno-economics based on field test results
- + Leverage assets and knowledge generated from previous projects
 - Spin >100 km of SRI PBI fibers
 - Improved potting and module construction
 - Modifications/improvements to fiber skid
 - Test skid utilized for testing (50 kWth) at the NCCC on an AIR BLOWN gasifier

Project Tasks Budget Period 1 (10-01-2018 \rightarrow 03-31-2020)

Task #	BP	Task	Status
1	1	Project Management and Planning	Completed
1	1	Preliminary Technology Maturation Plan Program Management Plan Preliminary TEA	Completed
1	1	Installation of Partner Agreements and Sub-awards	Completed
2	1	Modification of the 50 kWth Test Unit - Refurbish and upgrading of the existing skid system - Fabrication of Gen-2 Fibers - Module design and installation of the Modules (4 to 6-in diameter) - Membrane performance testing at SRI - HAZOP and PI&D Review at CAER	Completed
3	1	Modeling - Modeling of the Module arrangement - Modeling of the skid performance - Preliminary TEA	Completed
© 2022 SRI Internationa	al. All Rights Res	served. [15]	SRI International®

Project Tasks Budget Period 2

Task #	BP	Task	Status
4	2	Operation of the Test Unit at a Field -Skid Transport and Installation at the Site - Development of a test plan - Operation of the skid and data collection - Analysis of the data from the skid	>90% complete
5	2	EH&S, TEA and other Related Reports - Techno-Economic Analysis - Update the State Point Data Table - Technology Gap Analysis - Preparation of Technology Maturation Plan - Environmental Health and Safety Assessment (EH&S)	In progress
6	2	Skid Decommissioning Skid decommissioning and Transport Skid Postmortem and Storage 	Not Started
© 2022 SRI Internationa	al. All Rights Res	erved. [16]	SRI International

Current project work update

Fiber spinning and potting Budget Period 1

Fiber spinning capacity doubled with addition of Line 2 in 2019

Spun 150 km of fibers (BP-1)

Potted 160+ cartridges (old + new style), BP-1&2

SRI International

Fiber Skid Modifications/Improvements Budget Period 1 – Ensure maximum up-time at UK-CAER (max data collection)

Converted 2x existing modules:

- ~6.5 m² each
- Only need to replace damaged cartridge
- Faster replacement than repairing the 4-inch bundle

4-inch

19x modular

Installed 2x new modules:

- ~4 m² each
- Faster module swapping than converted modules
- Reduce gas bypass
- Designed to allow sweep gas

2x-new modules

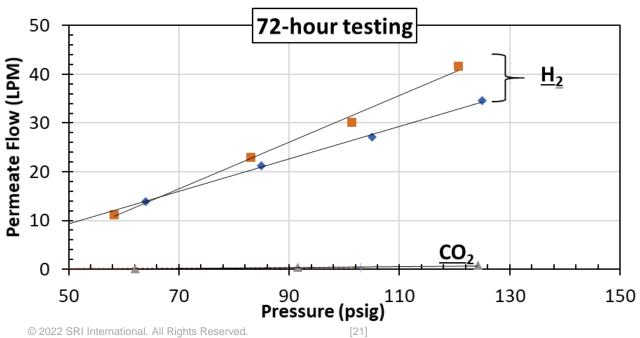
19x modular

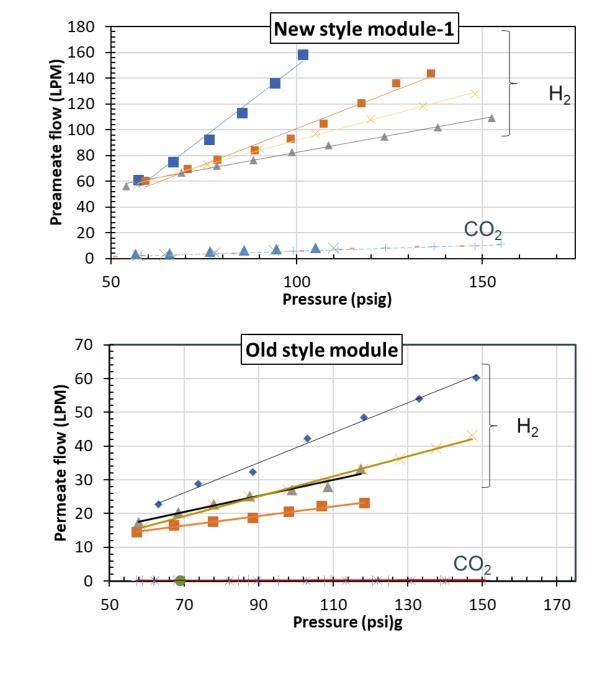
SRI International[®]

[19]

Fiber Skid Modifications/Improvements Budget Period 1

Refurbished existing Skid:





Skid Acceptance Testing Budget Period 2

Performance met expectations:

- Over 150 hours of Skid testing at SRI
- Over 150 membrane cartridges tested in skid
- Longer testing up to 72 hours for single run
- Selectivity: 19 50
- GPUs: 130 (150 °C)

SRI International°

Skid shipping & installation at UK CAER Budget Period 2

+ Installed at UK CAER July 2021

- 1st trip: September 2021
- 2nd trip: November 2021
- 3rd trip: June 2022

Cartridges prepped for shipping

Skid inside Container

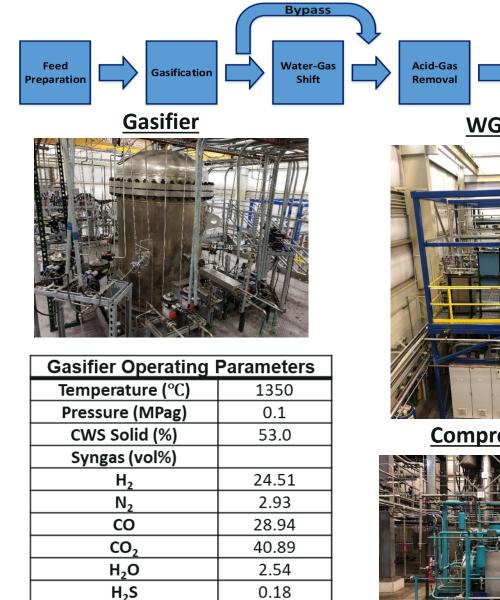
Skid Container being lifted onto trailer

Gas lines going from CAER facility into Container

SRI International°

UK-CAER Pilot Facility

Gasification Unit


- Multi-burner, entrained flow, oxygen blown, slagging type
- 1 ton/day coal consumption
- Syngas production rate: ~80 m³/hr
- H₂/CO: ~.80

Water-Gas Shift

- Packed bed
- Sulfur tolerant sour shift catalyst
- $H_2/CO: up to 11/1$

Syngas Compressor

- Metal Diaphragm Compressor
- 450 psi max outlet pressure

0.02

COS

WGS

Fischer-

Tropsch


Compressor

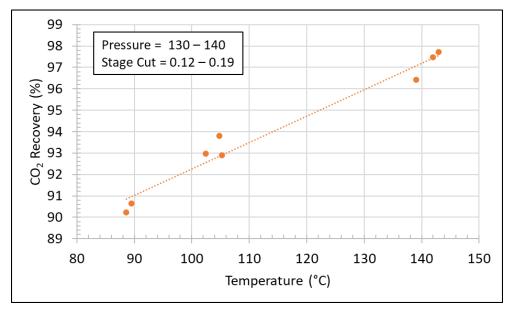
Test Results at UK-CAER Budget Period 2

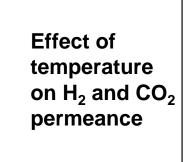
Syngas type	$H_2\%$	CO ₂ %	C0%	N_2 %	H ₂ S%
Natural gas	20 - 22	20 - 21	26 - 27	20 - 22	0
Coal	22 - 30	30 - 40	21 - 31	11 - 17	0.3 - 0.4

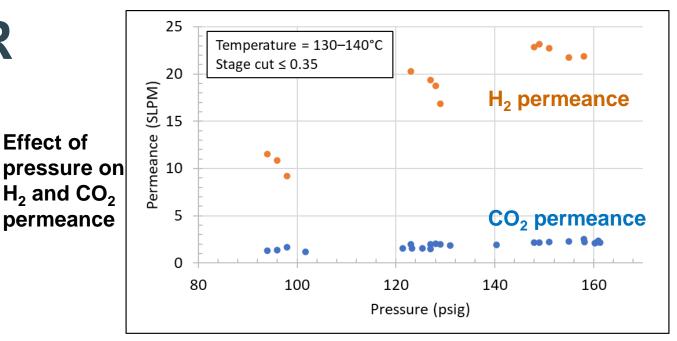
Feed to skid	1 st trip	2 nd trip	3 rd trip	All trips
Hours on nitrogen	82	175	447	694
Hours on syngas (natural gas)	14	19	22	53
Hours on syngas (coal)	2	18	31	51
Total hours on syngas	16	36	53	105
Total time hot and pressurized	98	211	500	809

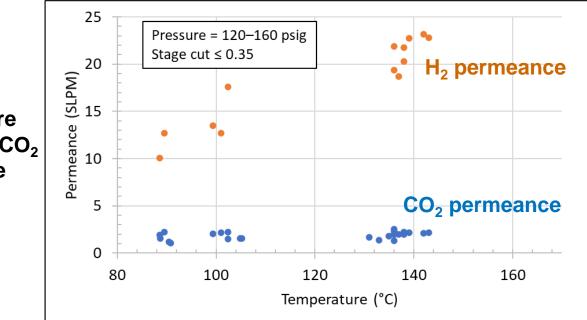
Date	Pressure (psig)	Temperatu re (C)	Feed (L/min)	Permeate (L/min)	Stage cut (Per./feed)	H ₂ /CO ₂
6/27/2022	162	142	9.48	2.72	0.3	22.7
6/27/2022	153	142	26.26	7.87	0.3	25.6
6/27/2022	161	143	16.97	4.52	0.27	23.5
6/27/2022	158	147	23.66	6.46	0.27	26.8

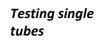
© 2022 SRI International. All Rights Reserved.


SRI International[®]


Test Results at UK-CAER Budget Period 2


Performance on real syngas at UK-CAER agrees with results on simulated syngas at SRI.

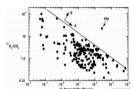

Selectivity increases with temperature (strongest effect) and pressure



SRI International°

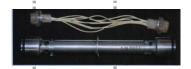
Technology Maturation

SRI International[®]


DOE Funding Critical to Technology Maturation DOE enabled "first-of-a-kind" hollow fiber membranes of PBI in kilometer lengths Accomplishment

Surface area ~ 10 cm²

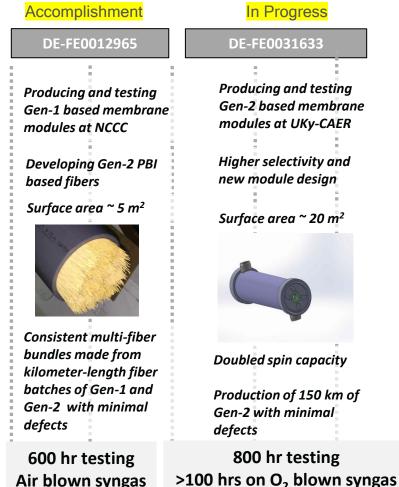
Membranes prepared by coating PBI on porous metal substrates


LANL demonstrates PBI is attractive for pre-combustion applications

DE-FC26-07NE43090

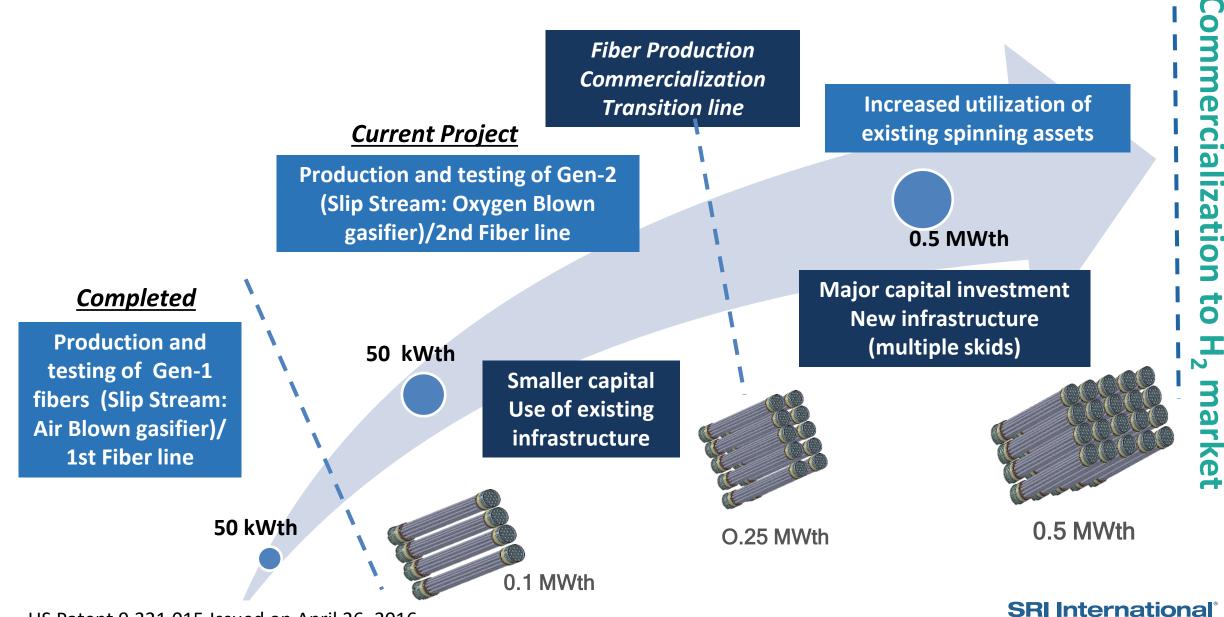
Producing Gen-1 PBI based membrane modules

Testing POTTED Gen-1 fiber bundles


Surface area ~ 100 cm²

Produce first ever porous hollow fiber membranes of PBI that were kilometers in length AND minimal defects

Dope preparation


1000 hr Testing: Simulated syngas

2006 2008 2010 2012 2014 2016 2018 2020 2022

SRI International

Roadmap to Small and Large Pilot Scale

US Patent 9,321,015 Issued on April 26, 2016

Acknowledgements

- Krista Hill, Dan Hancu, Andrew Jones, Jose Figueroa, Lynn Brickett, and others at NETL
- Indira Jayaweera (Principal Investigator), and the rest of the SRI team: Milad Yavari, Palitha Jayaweera, Elisabeth Perea, William Olson, Srini Bhamidi, Regina Elmore, Xiao Wang, Gopala Krishnan, Chris Lantman, and John Van Scoter
- + Greg Copeland and Mike Gruende (PBI Performance Products)
 + Kunlei Liu and his team (UKy- CAER)
- + Richard Callahan (Enerfex, Inc.)
- + Kevin O'Brien (Energy Commercialization, LLC)
- + John Jensvold and his team (Generon IGS)
- + The staff at the NCCC

SRI International[®]

Thank you

Contact:

Dr. Indira Jayaweera

indira.jayaweera@sri.com

1-650-859-4042