"Validation of Transformational CO₂ Capture Solvent Technology with Revolutionary Stability" (Apollo)

DE-FE0031727 August 19, 2022

Erik Meuleman, Ph.D. (P.I.)

Technical Lead: Project Manager: Major Contributors: Nathan Fine, Ph.D. Jennifer Atcheson Greg Staab, René Kupfer, Ph.D., Andrew Awtry, Ph.D.

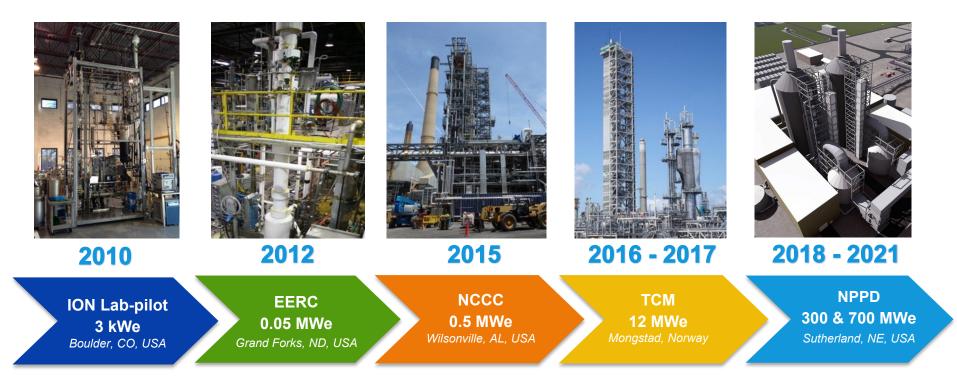
> U.S. Department of Energy National Energy Technology Laboratory Carbon Management Project Review Meeting August 15-19, 2022

DE-FE0031727: Apollo Project

- Overall Project Objective:
 - Scaling up a novel amine-based solvent technology with revolutionary stability and excellent CO₂ capture performance to a 0.5 MWe scale using real flue gas
- Budget:
 - ION and partners: \$750,000
 - DOE-NETL: \$2,999,998
- Period of Performance:
 - June 1, 2019 to October 30, 2022

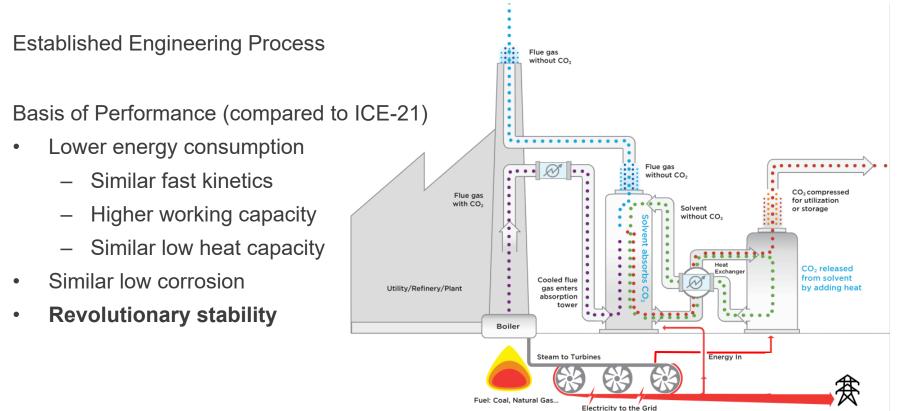
Pilot Solvent Test Unit (0.5 MWe) National Carbon Capture Center (NCCC) Wilsonville, AL (Courtesy of NCCC)

Project Scope and Key Milestones



- Laboratory scale work to fill critical knowledge gaps
- Run lab pilot for initial validation of ProTreat model
- ✓ Prepare for field-testing at NCCC
- ✓ Field-testing in the PSTU on:
 - ✓ 4.4 and 8% CO_2 from gas boiler
 - ✓ 11-13% from coal-derived flue gas
- Final data evaluation and extensive reporting

#	Milestone Title / Description	Originally Planned Completion Date	Revised Planned Completion Date	Actual Completion Date			
M1	Kickoff Meeting	06/01/2019	11/15/2019	12/05/2019			
M4	Functioning ProTreat® Module Delivered & Accepted	10/15/2019	07/31/2020	01/13/2021			
M7	Host Site Modifications Installed & Commissioned by NCCC	1/2/2020	05/31/2020	03/26/2021			
M8	Detailed Test Plan for PSTU Campaign Reviewed and Approved by ION & NCCC	12/16/2019	05/31/2020	01/19/2021			
M10	PSTU Test Campaign Complete (per Test Plan)	7/13/2020	10/31/2021	09/30/2021			
M11	Process Model Validation Complete	9/21/2020	10/31/2021	10/31/2021			
M12	Solvent Degradation Studies Complete	5/5/2020	11/30/2021	10/31/2021			
M13- M16	Appendices C, D, E, F of FOA	03/02/2021	10/31/2022	(Mar 2022)			
M17	Final Report Delivered to DOE-NETL	05/31/2021	10/31/2022				


ION's CO₂ Capture Technology Development / ICE-21 Accelerated development path leveraging existing research facilities

ICE-31

TESTING RESULTS AT NCCC

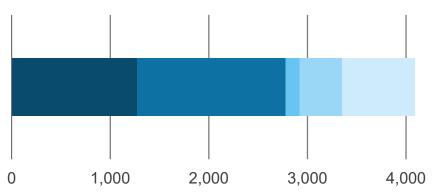
Campaign Operations Overview

Objective

• Run the PSTU with high up-time and high-quality data

Method

- Run parametric tests with NGCC flue gas to determine optimal operating condition
- Hold with NGCC flue gas for long-term testing
- Run coal parametric and Advanced Flash Stripper afterwards (runtime was dependent on coal gas availability)
- Test Advanced Flash Stripper with NGCC flue gas

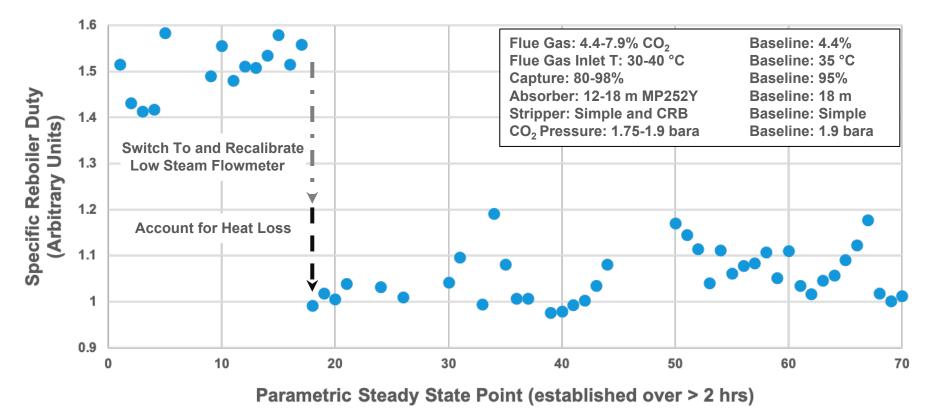

Results

- 6 Months of operation (March 29th October 3rd)
- Over 4,000 hours of run-time
- 85% Run-time with NGCC
- 34% Run-time with Advanced Flash Stripper

Significance

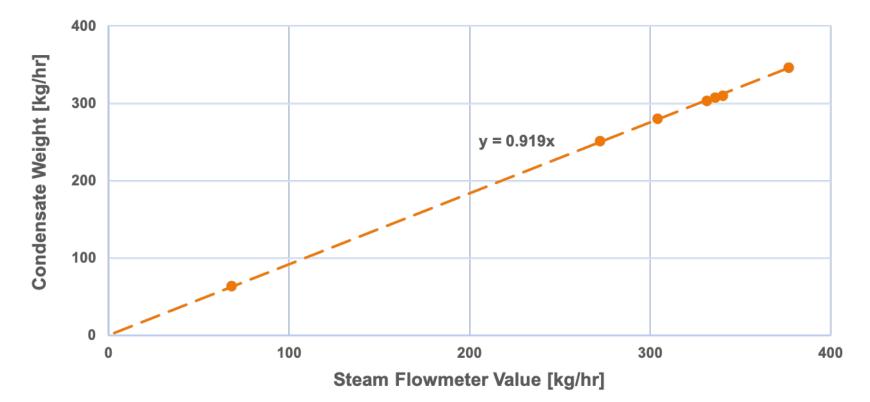
• High uptime with *zero* solvent-related shutdowns increases confidence in reliability of large-scale projects

Operational Hours

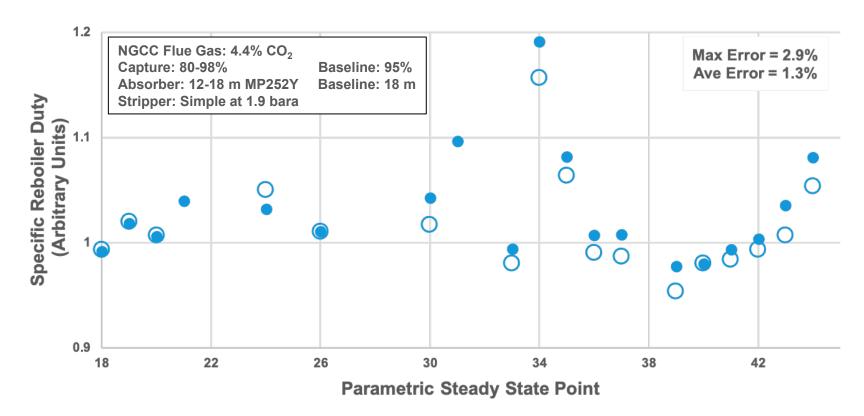


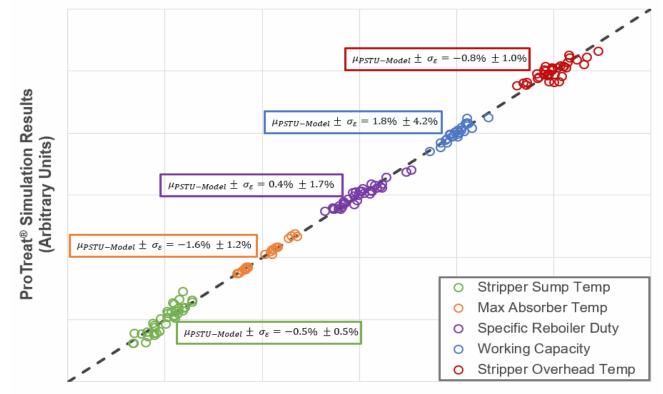
- Natural Gas Parametric (Simple Stripper)
- Natural Gas Long Term (Simple Stripper)
- Coal Parametric (Simple Stripper)
- Coal Long Term (Advanced Flash Stripper)
- NG Parametric (Advanced Flash Stripper)

Parametric Operations

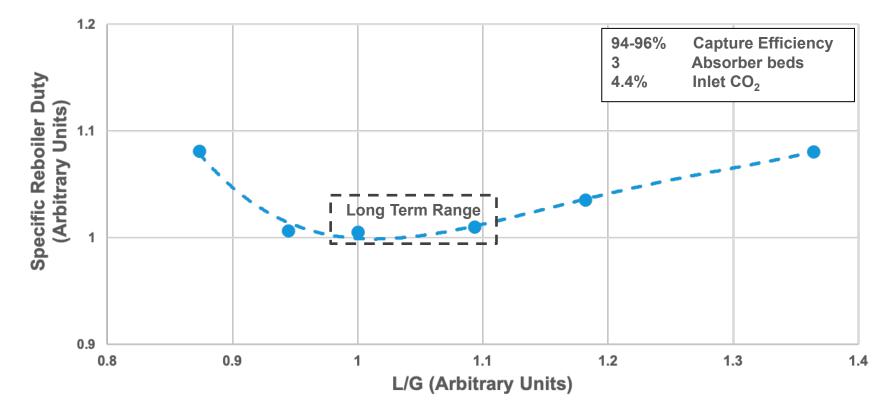

70 Different Parametric Settings

© ION CLEAN ENERGY


Recalibrating Steam Flowmeter

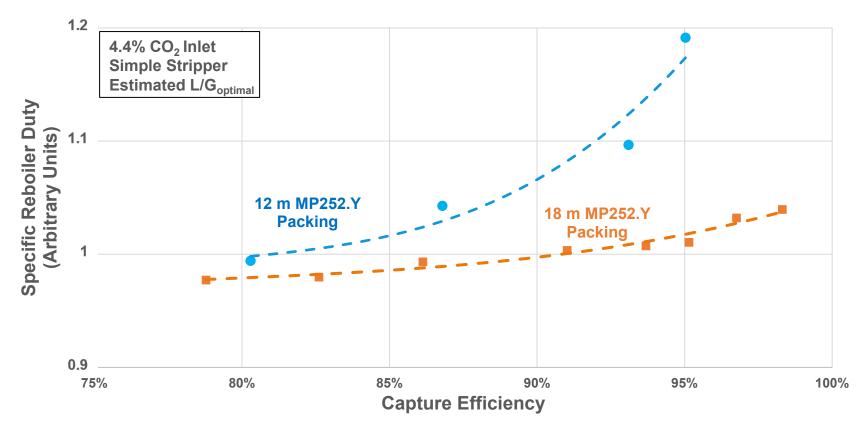

ProTreat® Model Validation

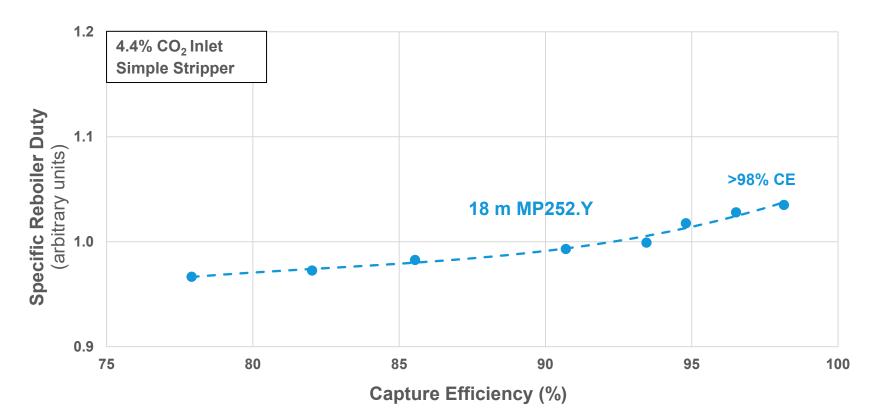
ProTreat® Model Validation



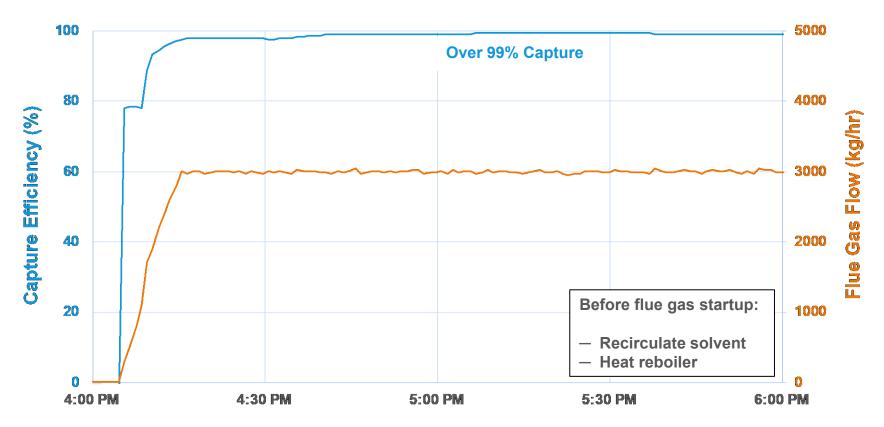
PSTU Empirical Results (Arbitrary Units)

© ION CLEAN ENERGY

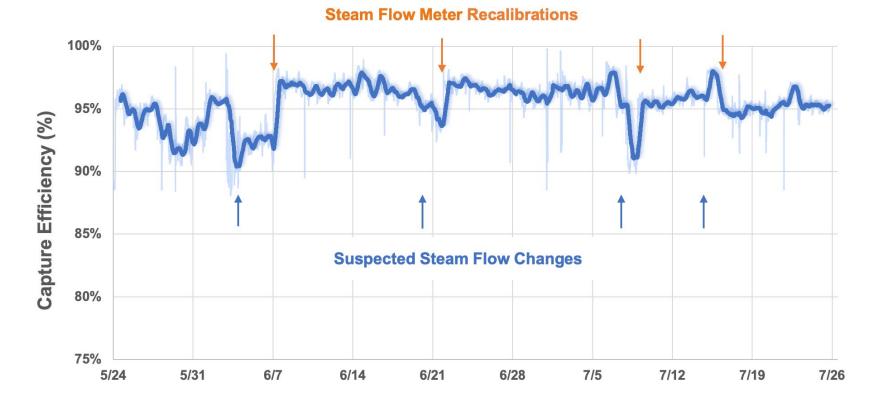

Simple Stripper SRD at 95% Capture



Variable Capture Efficiency with Simple Stripper

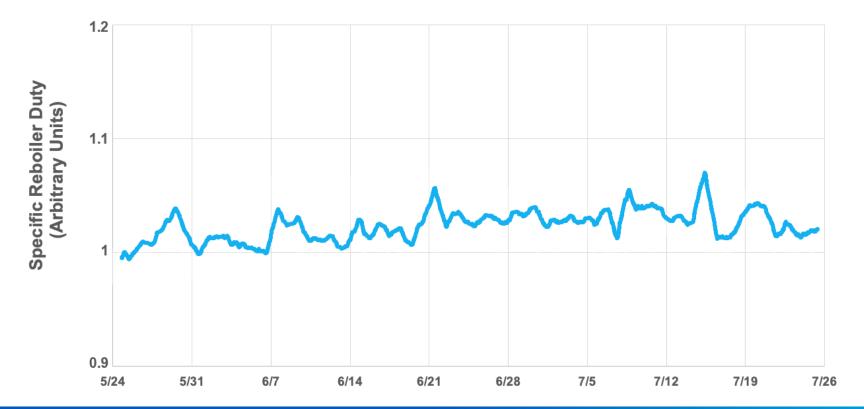

Variable Capture Efficiency with Simple Stripper

Capture-Ready Warm Start

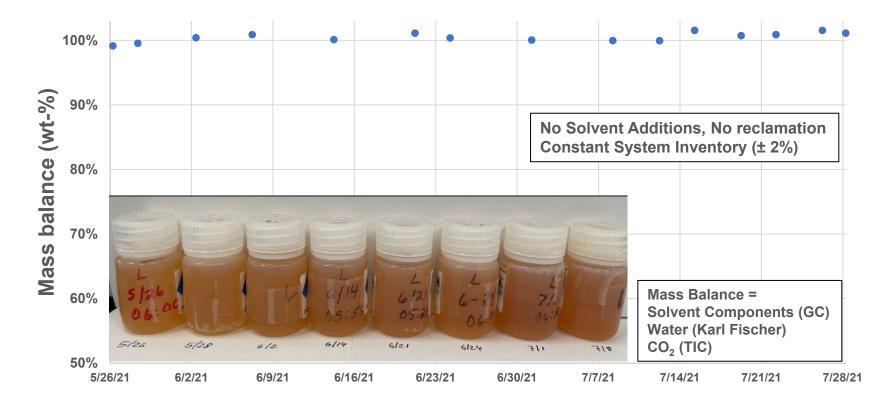


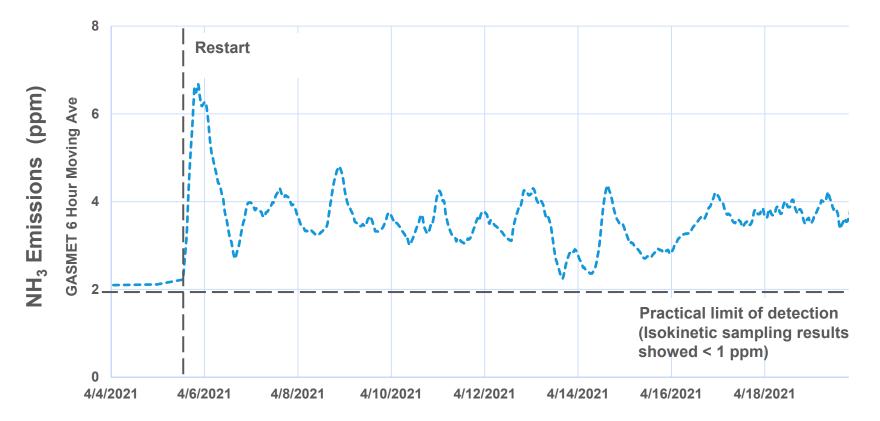
LONG-TERM TESTING

95% Capture for 1500 Hours

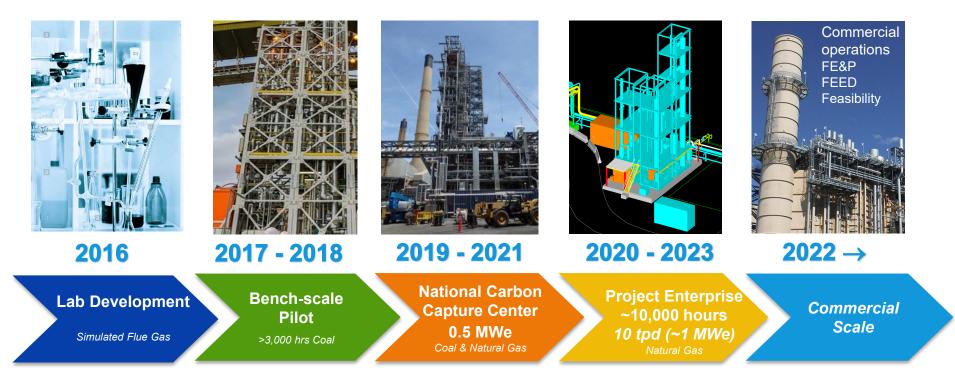


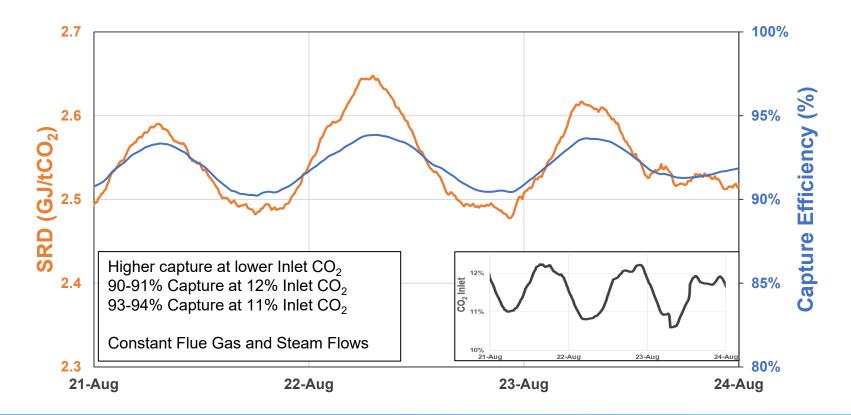
© ION CLEAN ENERGY


Stable SRD and Operations for 1500 Hours


ICE-31 Transformational Stability

Low Emissions




ICE-31 DEVELOPMENT PATH FOR NGCC AND COAL GAS RESULTS

ION's CO₂ Capture Technology Development – ICE-31

Coal gas: Effect of load-following on SRD and CE Steady state operation with Advanced Flash Stripper

NCCC Team

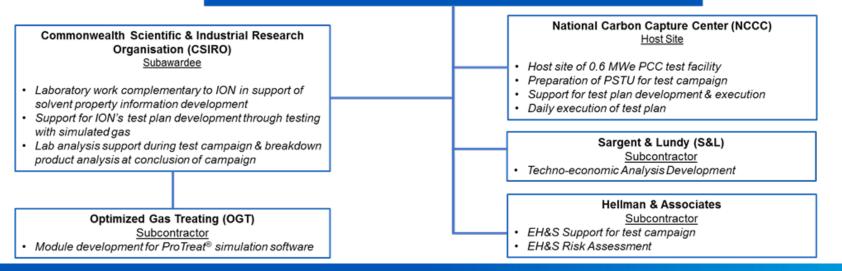
DOE Office of Fossil Energy & Carbon Management

ION Team

Acknowledgement

'his material is based upon work supported by the Department of Energy National Energy Technology Laboratory under cooperative award number DE-FE0031727.

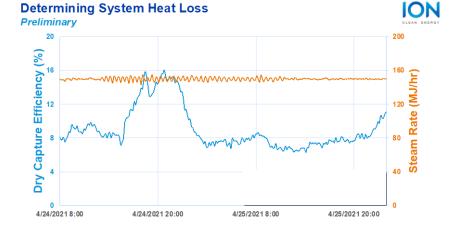
Disclaime

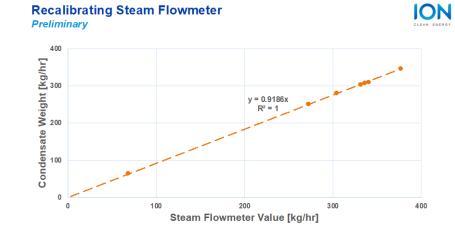

This presentation was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees makes any warranty, express or implied, or assumes any legal fiability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Appendix Organization Chart

ION Engineering (Lead Institution)

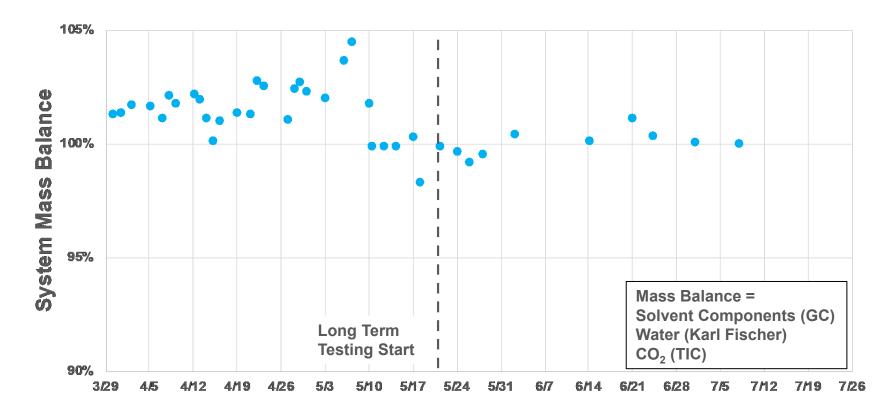
- · Management of scope, schedule and budget of overall project
- Laboratory work to support solvent property information development
- Develop test plan for 0.6 MWe demonstration
- Supervise NCCC in daily execution of test plan
- Analysis of all campaign and laboratory data
- Complete DOE Deliverables: TEA, Technology Gap Analysis, EH&S Risk Assessment, Technology Maturation Plan, and all other required reporting




Project Schedule – April 2021 update *To be confirmed with DOE (NCE)*

											E	Budge	t Peri	od 1											
Apollo Project Schedule		2	3	4	5	6	7	8	9	10	11	12	13	14	15	5 16	5 17	/ 18	3 19) 2	20	21	22	23	24
	Jun-19) Jul-19	Aug-19	Sep-19	Oct-19	Nov-19	Dec-19	Jan-20	Feb-2) Mar-20) Apr-20	May-20	Oct-20 -> Feb-		21 Apr-2	21 May-	21 Jun-	21 Jul-	21 Aug-	21 Se	p-21	Oct-21	Nov-21	Dec-21	Jan-22
Task 1 Project Management	M2				Ma	8	M1		N	5	M	4 M6-8, 1	2											M9-11	M13-17
Task 2 Laboratory Scale Evaluations																									
2.1 Lab-work for ICE-31 Properties																									
2.2 Develop ICE-31 Process Model in ProTreat®																									
2.3 Thermal and Oxidative Stability Study																									
2.4 Process Development Facility (PDF) Operation													1												
Task 3 Host Site Preparation and Test Plan Development																									
3.1 Develop Campaign Test Plan																									
3.2 Campaign related Environment, Health, and Safety (EH&S)																									
3.3 Host Site Preparation																									
Task 4 Field Testing at 0.6 MWe PCC Plant																									
4.1 0.6 MWe PCC Operation Phase I													I												
4.2 Analysis and Phase I Data Evaluation																									
4.3 0.6 MWe PCC Operation Phase II																									
4.4 Data Evaluation																									
4.4 Decommissioning																									
Task 5 Analytical Reporting for DOE Metrics																									
5.1 Process Model Validation																									
5.2 Techno-economic Analysis (TEA)																									
5.3 State Point Data Table							П		П						П			П							
5.4 Technology Gap Analysis							П		П						П			П							
5.5 Environmental Health and Safety Risk Assessment							П		\square																
5.6 Technology Maturation Plan																									
5.7 Final Reporting																									
Overall Task	Sch	edule	due	to CC	VID-	19 De	elay																		
Subtask					g&e			ect																	

Back-up slide



Overall Mass Balance

