# BENCH-SCALE TESTING OF A HIGH EFFICIENCY, ULTRA-COMPACT PROCESS FOR PRE-COMBUSTION CO<sub>2</sub> CAPTURE

#### **DE-FE 0031737**

Professor Theo Tsotsis, University of Southern California, Los Angeles, CA Professor Vasilios Manousiouthakis, University of California, Los Angeles, CA Dr. Rich Ciora, Mr. Doug Parsley, Media and Process Technology Inc., Pittsburgh, PA

**PRESENTER:** Vasilios Manousiouthakis









U.S. Department of Energy National Energy Technology Laboratory Office of Fossil Energy 2022 Carbon Management Project Review Meeting August 19, 2022

### Overview

# **Process Scheme: MR-AR IGCC**



## **MR-AR Technology: Key departures from baseline**

- WGS occurs in MR and AR with simultaneous  $\rm H_2$  and  $\rm CO_2$  removal respectively
- Steam is used as a sweep medium for product evacuation
- Single stage Selexol for H<sub>2</sub>S removal only.
- Steam is used as diluent in the combustion turbine.
- Potential N<sub>2</sub>, Ar sales to further boost plant economics

Baseline reference case is Case B5B of the reference document "Cost and Performance Baseline for Fossil Energy Plants – Volume 1: Bituminous Coal and Natural Gas to Electricity. September 24, 2019)"

### **MR-AR Process Schematic**







### **MR-AR multidomain multiscale model**

### **MR Model**



MR Multidomain Modeling Concept

#### **AR Model**



AR Multidomain Modeling Concept

### **MR Multiscale Equations (Reactor fluid domain)**

#### **Species Mass Balance:**

$$R_{i,f}^{r} - N_{T} \frac{A^{per}}{V^{r}} \overrightarrow{N_{i,f}^{per}} \Big|_{surface}^{mem} = \frac{\partial}{\partial t} \left( w_{i,f}^{r} \phi_{V} \rho_{f}^{r} \right) + \overrightarrow{\nabla} \cdot \left( \phi_{A} \overrightarrow{N_{i,f}^{r}} \right) \qquad i = 1, n$$

#### Momentum conservation:

$$-\vec{\nabla}\left(\phi_{A}p_{f}^{r}\right) = \phi_{A}\left(150\frac{\left(1-\phi_{V}\right)^{2}\mu_{f}^{r}}{d_{pellet}^{2}\phi_{V}^{3}}\overrightarrow{v_{f}^{r}} + \frac{1.75\left(1-\phi_{V}\right)\rho_{f}^{r}}{d_{pellet}\phi_{V}^{3}}\overrightarrow{v_{f}^{r}}\overrightarrow{v_{f}^{r}}\right) + \frac{\partial}{\partial t}\left(\phi_{V}\overrightarrow{v_{f}^{r}}\rho_{f}^{r}\right) + \vec{\nabla}\cdot\left(\phi_{A}\rho_{f}^{r}\overrightarrow{v_{f}^{r}}\overrightarrow{v_{f}^{r}}\right)$$

#### **Energy Balance:**

$$\begin{split} \phi_{V} \rho_{f}^{r} C_{v,f}^{r} \frac{\partial T_{f}^{r}}{\partial t} - \phi_{V} \frac{p_{f}^{r}}{\rho_{f}^{r}} \frac{\partial \rho_{f}^{r}}{\partial t} + \phi_{A} \rho_{f}^{r} \overline{v_{f}^{r}} C_{p,f}^{r} \overline{\nabla} T_{f}^{r} \\ &= \overline{\nabla} \cdot \left( \phi_{A} k_{f}^{r} \overline{\nabla} T_{f}^{r} \right) - \sum_{i=1}^{n} \frac{1}{M_{i}} \overline{h_{f,i}} \cdot R_{i,f}^{r} - \phi_{I} \psi_{A,c} h_{c}^{r} (T_{f}^{r} - T^{c} \Big|_{Surface}^{Cat.} ) \\ &+ N_{T} \frac{A^{per}}{V^{r}} \left[ H_{f}^{r} \sum_{i=1}^{n} \overline{N_{i,f}^{per}} \Big|_{surface}^{mem} - \sum_{i=1}^{n} \frac{1}{M_{i}} \overline{h_{f,i}} \cdot \overline{N_{i,f}^{per}} \Big|_{surface}^{mem} \right] - \frac{A^{per}}{V^{r}} h_{per}^{r} (T_{f}^{r} - T^{per} \Big|_{Surface}^{Membrane}) - \frac{A_{Surface}^{Reactor}}{V^{Reactor}} U(T_{f}^{r} - T_{w}) \end{split}$$

### **MR** Multiscale Equations (Catalyst pellet domain)

#### **Species Mass Balance:**

$$R_{i,f}^{c} = \frac{\partial}{\partial t} \left( w_{i,f}^{c} \varepsilon_{V}^{c} \rho_{f}^{c} \right) + \frac{1}{r^{2}} \frac{d}{dr} \left( r^{2} \varepsilon_{A}^{c} \overline{N_{i,f}^{c}} \right) \qquad i = 1, n$$

#### **Energy Balance:**

$$\frac{\varepsilon_{V}^{c}\rho_{f}^{c}C_{v,f}^{c}}{\partial t} - \frac{p_{f}^{c}}{\rho_{f}^{c}} - \frac{p_{f}^{c}}{\rho_{f}^{c}} \frac{\partial\left(\varepsilon_{V}^{c}\rho_{f}^{c}\right)}{\partial t} = \overrightarrow{\nabla} \cdot \left(\varepsilon_{A}^{c}k_{f}^{c}\overrightarrow{\nabla}T_{f}^{c}\right) - \sum_{i=1}^{n} \left[\varepsilon_{A}^{c}\overrightarrow{j_{i,f}^{c}} \cdot C_{p,i,f}^{c}\overrightarrow{\nabla}T_{f}^{c}\right] - \sum_{i=1}^{n} \frac{1}{M_{i}}\overline{h_{f,i}} \cdot R_{i,f}^{c}$$

#### **Boundary Conditions:**

$$\begin{split} w_{f,i}^{c} &= \left(w_{f,i}^{c}\right)_{in} \\ T_{f}^{c} &= T_{s}^{c} = T_{in} \\ p_{f}^{c} &= \left(p_{f}^{c}\right)_{in} \end{split} \begin{cases} \text{for } t = 0, \ \forall r \quad Q^{c} = -k^{c} \overrightarrow{\nabla} T^{c} = 0 \\ \overrightarrow{\nabla} p_{f}^{c} = 0 \end{cases} \begin{cases} \text{for } r = 0 & -h_{c}^{r} \left(T_{f}^{r} - T^{c}\right) = -k^{c} \overrightarrow{\nabla} T^{c} \\ \overrightarrow{\nabla} p_{f}^{c} = 0 \end{cases} \end{cases} \begin{cases} \text{for } r = R_{cat} \\ p_{f}^{c} = p_{f}^{r} \end{cases} \end{split}$$

### **MR Multiscale Equations (Permeation domain)**

#### **Species Mass Balance:**

$$N_{T} \frac{A^{per}}{V^{r}} \overrightarrow{N_{i,f}^{per}} = \frac{\partial}{\partial t} \left( w_{i,f}^{per} \phi_{V} \rho_{f}^{per} \right) + \overrightarrow{\nabla} \left[ \phi_{A} \left( w_{i,f}^{per} \rho_{f}^{per} \overrightarrow{v_{f}^{per}} \right) \right] \qquad i = 1, n$$

#### Momentum conservation:

$$\frac{\partial}{\partial t} \left( \phi_V \overrightarrow{v_f^{per}} \rho_f^{per} \right) + \overrightarrow{\nabla} \cdot \left( \phi_A \rho_f^{per} \overrightarrow{v_f^{per}} \overrightarrow{v_f^{per}} \right) = -\overrightarrow{\nabla} \left( \phi_A p_f^{per} \right) - \overrightarrow{\nabla} \cdot \overrightarrow{v_f^{per}} \left( -\mu_f^{per} \overrightarrow{\nabla} \overrightarrow{v_f^{per}} \right)$$

#### **Energy Balance:**

$$\begin{split} \phi_{V} \rho_{f}^{per} C_{v,f}^{per} \frac{\partial T_{f}^{per}}{\partial t} &- \frac{p_{f}^{per}}{\rho_{f}^{per}} \frac{\partial \left(\phi_{V} \rho_{f}^{per}\right)}{\partial t} + \phi_{A} \rho_{f}^{per} \overline{v_{f}^{per}} C_{p,f}^{per} \overline{\nabla} T_{f}^{per} \\ &= \overline{\nabla} \cdot \left(\phi_{A} k_{f}^{per} \overline{\nabla} T_{f}^{per}\right) + N_{T} \frac{A^{per}}{V^{r}} \left(\sum_{i=1}^{n} \frac{1}{M_{i}} \overline{h_{f,i}} \cdot \overline{N_{i,f}^{per}} - H_{f}^{per} \sum_{i=1}^{n} \overline{N_{i,f}^{per}}\right) \\ &+ \frac{A^{per}}{V^{r}} h_{perm}^{per} (T_{f}^{r} - T^{per} \Big|_{Surface}^{Membrane}) \end{split}$$

#### **MR Boundary Conditions (Reactor & Permeation Domain)**

#### **Reactor Domain:**

$$\begin{cases} \overrightarrow{v_f^r} = \overrightarrow{v_f^r}(t) \\ w_{f,i}^r = w_{f,i}^r(t) \\ T_f^r = T_f^r(t) \\ p_f^r = p_{f,in}^r \ \forall t \end{cases} \text{ for } x = 0 ;$$

$$\vec{\nabla} w_{f,i}^{r} = 0$$

$$\vec{\nabla} T_{f}^{r} = 0$$

$$for x = L \land \forall t$$

#### **Permeation Domain:**

$$\vec{v_f^{per}} = \left(\vec{v_f^{per}}\right)_{in}$$

$$p_f^{per} = \left(p_f^{per}\right)_{in}$$

$$w_{f,i}^{per} = \left(w_{f,i}^{per}\right)_{in}$$

$$T_f^{per} = \left(T_f^{per}\right)_{in}$$

$$\vec{\nabla} w_{i,f}^{per} = 0 \vec{\nabla} T_f^{per} = 0$$
 for  $x = L \land \forall t$ 

## **AR Multiscale Equations (Reactor fluid domain)**

#### **Species Mass Balance:**

$$R_{i,f}^{r} = \frac{\partial}{\partial t} \left( w_{i,f}^{r} \phi_{V} \rho_{f}^{r} \right) + \overrightarrow{\nabla} \left( \phi_{A} \overrightarrow{N_{i,f}^{r}} \right) \qquad i = 1, n$$

Where: 
$$\overrightarrow{N_{i,f}^r} = w_{i,f}^r \rho_f^r \overrightarrow{v_f^r} + \overrightarrow{j_{i,f}^r}$$

#### **Newly incorporated Dispersion Model:**

$$\overrightarrow{j_{i,f}^{r}} = -D^{*} \overrightarrow{\nabla} \left( \rho_{f}^{r} w_{i,f}^{r} \right)$$

 $D^*$  is determined empirically from tracer pulse experiments from which we can infer the degree of dispersion in the reactor

### **AR Multiscale Equations (Reactor fluid domain) Cont.**

#### Momentum conservation:

$$-\overrightarrow{\nabla}\left(\phi_{A}p_{f}^{r}\right) = \phi_{A}\left(150\frac{\left(1-\phi_{V}\right)^{2}\mu_{f}^{r}}{d_{pellet}^{2}\phi_{V}^{3}}\overrightarrow{v_{f}^{r}} + \frac{1.75\left(1-\phi_{V}\right)\rho_{f}^{r}}{d_{pellet}\phi_{V}^{3}}\overrightarrow{v_{f}^{r}}\overrightarrow{v_{f}^{r}}\right) + \frac{\partial}{\partial t}\left(\phi_{V}\overrightarrow{v_{f}^{r}}\rho_{f}^{r}\right) + \overrightarrow{\nabla}\cdot\left(\phi_{A}\rho_{f}^{r}\overrightarrow{v_{f}^{r}}\overrightarrow{v_{f}^{r}}\right)$$

#### **Energy Balance:**

$$\begin{split} \phi_{V} \rho_{f}^{r} C_{v,f}^{r} \frac{\partial T_{f}^{r}}{\partial t} &- \phi_{V} \frac{p_{f}^{r}}{\rho_{f}^{r}} \frac{\partial \rho_{f}^{r}}{\partial t} + \phi_{A} \rho_{f}^{r} \overline{v_{f}^{r}} C_{p,f}^{r} \overline{\nabla} T_{f}^{r} \\ &= \overline{\nabla} \cdot \left( \phi_{A} k_{f}^{r} \overline{\nabla} T_{f}^{r} \right) - \sum_{i=1}^{n} \frac{1}{M_{i}} \overline{h_{f,i}} \cdot R_{i,f}^{r} - \phi_{I} \psi_{A,c} h_{c}^{r} (T_{f}^{r} - T^{c} \Big|_{Surface}^{Cat.} ) \\ &+ N_{T} \frac{A^{per}}{V^{r}} \left[ H_{f}^{r} \sum_{i=1}^{n} \overline{N_{i,f}^{per}} \Big|_{surface}^{mem} - \sum_{i=1}^{n} \frac{1}{M_{i}} \overline{h_{f,i}} \cdot \overline{N_{i,f}^{per}} \Big|_{surface}^{mem} \right] - \frac{A^{per}}{V^{r}} h_{per}^{r} (T_{f}^{r} - T^{per} \Big|_{Surface}^{Membrane}) - \frac{A_{Surface}^{Reactor}}{V^{Reactor}} U(T_{f}^{r} - T_{w}) \end{split}$$

#### **AR Reactor fluid domain: Boundary conditions**

$$\begin{split} \overrightarrow{\nabla}T_{f}^{r} &= 0 \\ \overrightarrow{\nabla}w_{f,i}^{r} &= 0 \end{split} for \ x = L \ \land \ \forall t \\ \\ \overrightarrow{v_{reg}^{r}} &= \overrightarrow{v_{f}^{r}}(t) &= \begin{cases} v_{Ads}^{r} & for \ (k-1)(\Delta t_{Ads} + \Delta t_{Reg}) \leq t < k\Delta t_{Ads} + (k-1)\Delta t_{Reg} \\ v_{Reg}^{r} & for \ k\Delta t_{Ads} + (k-1)\Delta t_{Reg} \leq t < k(\Delta t_{Ads} + \Delta t_{Reg}) \end{cases} \end{cases} \\ \\ w_{f,i}^{r} &= w_{f,i}^{r}(t) &= \begin{cases} w_{f,i,Ads}^{r} & for \ (k-1)(\Delta t_{Ads} + \Delta t_{Reg}) \leq t < k\Delta t_{Ads} - \Delta t_{Pur} + (k-1)\Delta t_{Reg} \\ w_{f,i,Reg}^{r} & for \ k\Delta t_{Ads} - dr_{Pur} + (k-1)\Delta t_{Reg} \leq t < k(\Delta t_{Ads} + \Delta t_{Reg}) \end{cases} \end{cases} \\ \\ \\ T_{ds}^{r} &= for \ (k-1)(\Delta t_{Ads} + \Delta t_{Reg}) \leq t < k\Delta t_{Ads} + (k-1)\Delta t_{Reg} \\ T_{Ads} & for \ (k-1)(\Delta t_{Ads} + \Delta t_{Reg}) \leq t < k\Delta t_{Ads} + (k-1)\Delta t_{Reg} \\ T_{Ads} &= for \ (k-1)(\Delta t_{Ads} + \Delta t_{Reg}) \leq t < k\Delta t_{Ads} + (k-1)\Delta t_{Reg} \\ T_{Ads} &+ \frac{T_{Reg} - T_{Ads}}{\Delta t_{Hea}} \left( t - \left[ \frac{k\Delta t_{Ads} + (k-1)\Delta t_{Reg}}{k(k-1)\Delta t_{Reg}} \right] \right) for \ \begin{cases} k\Delta t_{Ads} + (k-1)\Delta t_{Reg} \\ t < \left[ \frac{k\Delta t_{Ads} + (k-1)\Delta t_{Reg}}{k(k-1)\Delta t_{Reg}} \right] \\ T_{f}^{r} &= T_{f}^{r}(t) = \begin{cases} T_{Ads} & for \ (k-1)(\Delta t_{Ads} + \Delta t_{Reg}) = (k-1)(\Delta t_{Ads} + (k-1)\Delta t_{Reg}) \\ T_{Ads} &= for \ \left[ \frac{k\Delta t_{Ads} + (k-1)\Delta t_{Reg}}{k(k-1)\Delta t_{Reg}} \right] \\ T_{Reg}^{r} &= \frac{T_{Reg} - T_{Ads}}{\Delta t_{Coo}} \left( t - \left[ \frac{k(\Delta t_{Ads} + \Delta t_{Reg}) - (\Delta t_{Coo} + \Delta t_{Tra})}{(\Delta t_{Coo} + \Delta t_{Tra})} \right] \\ T_{Ads}^{r} &= for \ \left\{ k(\Delta t_{Ads} + \Delta t_{Reg}) - \Delta t_{Tra} \leq t < k(\Delta t_{Ads} + \Delta t_{Reg}) - \Delta t_{Tra}} \right\} \end{cases} \end{cases} \right\}$$

### **AR Multiscale Equations (Catalyst pellet domain)**

#### **Species Mass Balance:**

$$R_{i,f}^{c} = \frac{\partial}{\partial t} \left( w_{i,f}^{c} \varepsilon_{V}^{c} \rho_{f}^{c} \right) + \frac{1}{r^{2}} \frac{d}{dr} \left( r^{2} \varepsilon_{A}^{c} \overline{N_{i,f}^{c}} \right) \qquad i = 1, n$$

#### **Energy Balance:**

$$\boxed{\varepsilon_{V}^{c}\rho_{f}^{c}C_{v,f}^{c}\frac{\partial T_{f}^{c}}{\partial t} - \frac{p_{f}^{c}}{\rho_{f}^{c}}\frac{\partial\left(\varepsilon_{V}^{c}\rho_{f}^{c}\right)}{\partial t} = \overrightarrow{\nabla}\cdot\left(\varepsilon_{A}^{c}k_{f}^{c}\overrightarrow{\nabla}T_{f}^{c}\right) - \sum_{i=1}^{n}\left[\varepsilon_{A}^{c}\overrightarrow{j_{i,f}^{c}}\cdot C_{p,i,f}^{c}\overrightarrow{\nabla}T_{f}^{c}\right] - \sum_{i=1}^{n}\frac{1}{M_{i}}\overline{h_{f,i}}\cdot R_{i,f}^{c}}}{\partial t}$$

#### **Boundary Conditions:**

$$\begin{split} w_{f,i}^{c} &= \left(w_{f,i}^{c}\right)_{in} \\ T_{f}^{c} &= T_{s}^{c} = T_{in} \\ p_{f}^{c} &= \left(p_{f}^{c}\right)_{in} \end{split} \begin{cases} \text{for } t = 0, \ \forall r \quad Q^{c} = -k^{c} \overrightarrow{\nabla} T^{c} = 0 \\ \overrightarrow{\nabla} p_{f}^{c} = 0 \end{cases} \begin{cases} \text{for } r = 0 & -h_{c}^{r} \left(T_{f}^{r} - T^{c}\right) = -k^{c} \overrightarrow{\nabla} T^{c} \\ \overrightarrow{\nabla} p_{f}^{c} = 0 \end{cases} \end{cases} \begin{cases} \text{for } r = R_{cat} \\ p_{f}^{c} = p_{f}^{r} \end{cases} \end{split}$$

### **AR Multiscale Equations (Adsorbent pellet domain)**

#### **Species Mass Balance:**

$$R_{i,f}^{a} = \frac{\partial}{\partial t} \left( w_{i,f}^{a} \varepsilon_{V}^{a} \rho_{f}^{a} \right) + \overrightarrow{\nabla} \left( \varepsilon_{A}^{a} \overrightarrow{N_{i,f}^{a}} \right) \qquad i = 1, n$$

#### **Energy Balance:**

$$\varepsilon_{V}^{a}\rho_{f}^{a}C_{v,f}^{a}\frac{\partial T_{f}^{a}}{\partial t}-\frac{p_{f}^{a}}{\rho_{f}^{a}}\frac{\partial\left(\varepsilon_{V}^{a}\rho_{f}^{a}\right)}{\partial t}=\overrightarrow{\nabla}\cdot\left(\varepsilon_{A}^{a}k_{f}^{a}\overrightarrow{\nabla}T_{f}^{a}\right)-\varepsilon_{A}^{a}\sum_{i=1}^{n}\left[\overrightarrow{j_{i,f}^{a}}\cdot C_{p,i,f}^{a}\overrightarrow{\nabla}T_{f}^{a}\right]-\sum_{i=1}^{n}\left[\frac{1}{M_{i}}\overrightarrow{h_{f,i}}\cdot R_{i,f}^{a}\right]$$

#### **Boundary Conditions:**

$$\begin{array}{c} w_{f,i}^{c} = \left(w_{f,i}^{c}\right)_{in} \\ T_{f}^{c} = T_{s}^{c} = T_{in} \\ p_{f}^{c} = \left(p_{f}^{c}\right)_{in} \end{array} \right\} for \ t = 0, \ \forall r \qquad \begin{array}{c} \overrightarrow{N_{f,i}^{a}} = 0 \\ Q^{a} = -k^{a} \overrightarrow{\nabla} T^{a} = 0 \\ \overrightarrow{\nabla} p^{a} = 0 \end{array} \right\} for \ r = 0 \qquad \begin{array}{c} -K_{m,i} \left(w_{f,i}^{r} \rho_{f}^{r} - w_{f,i}^{a} \rho_{f}^{a}\right) = \overrightarrow{N_{f,i}^{a}} \\ -h^{a} \left(T_{f}^{r} - T^{a}\right) = -k^{a} \overrightarrow{\nabla} T^{a} \\ \overrightarrow{\nabla} p^{a} = 0 \end{array} \right\} for \ r = R_{ads}$$

### **Common MR/AR Multiscale Equations**

Equation of State (Ideal Gas) :

$$p_f^{\alpha} V_f^{\alpha} = n_f^{\alpha} R T_f^{\alpha} \, \Big|, \ \alpha \in \Big\{ r, c, a, p \Big\}$$

DGM Diffusion Model (for Catalyst/Adsorbent):

$$\begin{cases} \sum_{j=1}^{n} \frac{1}{D_{ij}^{eff}} \left[ \frac{x_{f,j}^{\alpha}}{M_{i}} \left( \varepsilon_{A}^{\alpha} \overline{N_{f,i}^{\alpha}} \right) - \frac{x_{f,i}^{\alpha}}{M_{j}} \left( \varepsilon_{A}^{\alpha} \overline{N_{f,j}^{\alpha}} \right) \right] + \left( \frac{1}{M_{i} D_{iK}^{eff}} \right) \left( \varepsilon_{A}^{\alpha} \overline{N_{f,i}^{\alpha}} \right) = \\ = - \left[ c_{f,tot}^{\alpha} \overline{\nabla} x_{f,i}^{\alpha} + \left( \frac{1}{p_{f}^{\alpha}} + \frac{1}{D_{iK}^{eff}} \frac{B_{o}}{\mu_{f}^{\alpha}} \right) c_{f,i}^{\alpha} \overline{\nabla} p_{f}^{\alpha} \right] \quad i = 1, n \quad \land i \neq j \end{cases}$$

$$\begin{cases} D_{ij}^{eff} = \left( \frac{\varepsilon_{A}^{\alpha}}{\tau^{\alpha}} \right) \left( \frac{8.5872 \cdot 10^{-24}}{p_{f}^{\alpha}} \frac{m^{3}kg^{\frac{1}{2}}}{s^{3}K^{\frac{3}{2}}mol^{\frac{1}{2}}} \right) \sqrt{\frac{\left(T^{\alpha}\right)^{3}}{M_{ij}}} \\ M_{ij} = 2 \left[ \frac{1}{M_{i}} + \frac{1}{M_{j}} \right]^{-1} \\ D_{iK}^{eff} = \left( \frac{\varepsilon_{A}^{\alpha}}{\tau^{\alpha}} \right) \left( \frac{4 d_{pore}^{\alpha}}{3} \right) \sqrt{\frac{\tilde{R}T^{\alpha}}{2\pi M_{i}}} \\ B_{o} = \frac{d_{pore,\alpha}^{2}}{32} \end{cases}$$

## **Experimental Design basis**

### **MR-AR Bench-scale Design Basis**

#### MR

- Feed Pressure: ~10 25 bar
- Feed temperature: 510 535 K
- Syngas feed flowrate: 1-5 scfm
- Feed composition: As delivered from Uky CAER facility.

#### AR

• Temperature: Adsorption @ 523 K & Regeneration @ 523K - 673 K

#### General

- Catalyst (MR and AR): Clariant
- Adsorbent (AR): Hydrotalcite pellets

#### MR P&ID

MR and Main Oven



### AR P&ID



# **MR-AR** bench scale sizing details

#### MR

- MR tubes ID: 3.5 mm
- MR tubes OD: 5.7 mm
- MR tube length: 482.6 mm
- No of tubes/bundle: 7 18



#### AR (single bed)

- AR ID: 2.5" (0.635 m)
- AR Length: 5' (1.524 m)
- Cat. loading: ~ 232g / vessel
- Ads. loading: ~ 1,638g /vessel
- Inert pellet loading: ~ 3,260g /vessel
- Run configuration: 2 or 3 beds in series





#### **MR-AR** assembled bench scale unit



### **Bench-Scale Experiments**

### **Bench-Scale Experiments**

#### Field Test Period: 05-28-21 - Present



Syngas Field Test Exposure Summary

#### **Total Exposure Hours**

Non-overlap" refers to time which is only counted in one "mode" at a time (ie. if MR is running at the same time as an AR is sitting in static, it only counts once)











Total carbon ( $CO + CO_2$ ) steady-state flow in the MR inlet and MR reject-side exit



Total carbon (CO + CO<sub>2</sub>) dynamic  $N_2$  to syngas pulse flow in the MR inlet and MR reject-side exit

## **MR Experimental - Simulated Conversions**



MR CO Conversion

MR CO experimental (12/09/2021) and simulated conversions

## **Experimental Data Analysis – MR CO conv. summary**

| Data-set | Mean Feed Composition<br>[CO/CO <sub>2</sub> /H <sub>2</sub> /H <sub>2</sub> O/N <sub>2</sub> ] | Feed<br>Pressure<br>[psig] | Temp.<br>[°C] | Flow rate<br>[scfm] | Measured<br>MR CO<br>Conv.<br>[%] | Simulated<br>MR CO Conv.<br>% (*%) |
|----------|-------------------------------------------------------------------------------------------------|----------------------------|---------------|---------------------|-----------------------------------|------------------------------------|
| 12-09-21 | 23.99 /36.25 /21.13 /7.57 /11.02                                                                | 285                        | 250           | 0.482               | 53                                | 41 (80) - 46 (100)                 |
| 12-13-21 | 16.35 /38.75 /16.57 /25.84 /2.21                                                                | 249                        | 240           | 0.585               | 39                                | 35 (80) – 41 (100)                 |
| 12-14-21 | 12.75 /32.76 /13.90 /30.10 /10.47                                                               | 255                        | 249           | 0.614               | 51                                | 45 (80) - 52 (100)                 |
| 12-15-21 | 14.58 /29.90 /14.37 /29.87 /9.64                                                                | 245                        | 263           | 0.626               | 52                                | 39 (80) – 46 (100)                 |
| 04-05-22 | 15.29 /37.09 /15.19 /22.94 /9.49                                                                | 258                        | 265           | 0.328               | 35                                | 34 (80)                            |
| 04-06-22 | 15.73 /30.80 /16.19 /23.60 /13.68                                                               | 255                        | 265           | 0.284               | 32                                | 30 (80)                            |
|          | 9.34 /24.12 /9.05 /37.37 /20.12                                                                 | 220                        | 265           | 0.284               | 75                                | 74 (80)                            |
| 06-09-22 | 9.67 /11.46 /10.51 /62.96 /5.40                                                                 | 260                        | 253           | 0.611               | 64                                | 69 (80)                            |

\*Surface area of membrane exposed to gas flow (%)

# AR Reaction/Adsorption-Regeneration Experimental Data: Feed: MR Reject – (H<sub>2</sub>O, N<sub>2</sub>) Exit: CO/CO<sub>2</sub> conc.



# AR Adsorption-Regeneration Experimental Data: Feed: CO<sub>2</sub> – (H<sub>2</sub>O, N<sub>2</sub>) Exit: CO<sub>2</sub> conc.



#### AR CO<sub>2</sub> exit concentration, 06/09/22

Concentration [-]

Time of Day

## **AR Experimental Data – AR breakthrough (syngas)**



#### AR Experimental CO<sub>2</sub> Breakthrough Data: Feed: CO<sub>2</sub> – N<sub>2</sub> Exit: CO<sub>2</sub> conc.



#### **Operating Conditions:**

AR A (2 beds in series)

- Feed T: 223°C
- Feed P: 140 psi
- Flowrate: 4 slpm
- Mass of Ads.: 3505.9 g

#### **AR B (2 beds in series)**

- Feed T: 253°C
- Feed P: 100 psi
- Flowrate: 4 slpm
- Mass of Ads.: 3325.4 g

#### AR Experimental Data – AR working/test capacity and W/ $F_{CO2}$

| Data set | AR | Feed gas             | Working<br>capacity (% wt.) | Test<br>capacity<br>(% wt.) |
|----------|----|----------------------|-----------------------------|-----------------------------|
| 05/28/21 | В  | Syngas               | 3.73                        | -                           |
| 07/23/21 | В  | Syngas               | 2.86                        | -                           |
| 00/04/04 | В  | Syngas               | 2.54                        | -                           |
| 08/04/21 | А  | Syngas               | 1.14                        | -                           |
| 12/10/21 | В  | Syngas               | 2.94                        | -                           |
| 12/14/21 | В  | Syngas               | 1.50                        | -                           |
| 12/15/21 | В  | Syngas               | 1.43                        | -                           |
| 04/06/22 | А  | Syngas               | -                           | 2.49                        |
| 04/07/22 | А  | Pure CO <sub>2</sub> | -                           | 4.90                        |
| 04/08/22 | А  | Pure CO <sub>2</sub> | -                           | 7.30                        |
| 04/08/22 | В  | Pure CO <sub>2</sub> | -                           | 4.16                        |

Working capacity: Ratio of the mass of CO<sub>2</sub> adsorbed to the mass of adsorbent in AR bed at CO<sub>2</sub> breakthrough.

**CO2 breakthrough** is defined as the time for which the CO2 exit molar flowrate, measured at the AR exit, becomes 1% of the CO2 inlet molar flowrate.

**Test capacity:** Ratio of the mass of CO2 adsorbed to the mass of adsorbent in AR bed past CO2 breakthrough but before bed saturation.

| Data set | Target<br>(g <sub>ads</sub> /slpm CO <sub>2</sub> ) | Real AR A<br>(g <sub>ads</sub> /slpm CO <sub>2</sub> ) | Real AR B<br>(g <sub>ads</sub> /slpm CO <sub>2</sub> ) | Stream   | Cycle<br>Times | Cycles<br>Run |
|----------|-----------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|----------|----------------|---------------|
| 05/24/22 | 10000                                               | 11772                                                  | 11620                                                  | Syngas   | 20/20 mins     | 3             |
| 05/25/22 | 4250                                                | 4241                                                   | 4142                                                   | Syngas   | 20/20 mins     | 4             |
| 05/27/22 | 5500                                                | 5741                                                   | 5684                                                   | Syngas   | 15/15 mins     | 10            |
| 06/07/22 | 3500                                                | 3546                                                   | 3572                                                   | Syngas   | 15/15 mins     | 4             |
| 06/08/22 | 4000                                                | 4100                                                   | 4043                                                   | Syngas   | 15/15 mins     | 6             |
| 06/09/22 | 4500                                                | 4784                                                   | 4267                                                   | Pure CO2 | 15/15 mins     | 3             |
| 06/10/22 | 1500                                                | 1518                                                   | 1569                                                   | Pure CO2 | 15/15 mins     | 4             |

# **Experimental Data Analysis – AR Dispersion**

- Residence time density (Rtd) experiments performed on the AR vessels
- AR vessels are filled with N<sub>2</sub> and CH<sub>4</sub> is used as a tracer (50/50 N<sub>2</sub>/CH<sub>4</sub> blend)
- The tracer is injected at 3 subsequent, discrete time points for a duration of a few seconds (15 s – 35 s)
- CH4 concentration is measured at the AR outlet (Responses)
  - A dispersion coefficient for the AR model is identified that best approximates the response to the first tracer injection
  - The identified dispersion coefficient is used in simulations for the subsequent tracer responses
  - Resulting model predications show excellent agreement with the experimental data

### **Experimental Data Analysis – AR A Dispersion**



### **Experimental Data Analysis – AR B Dispersion**



### **Preliminary TEA**

## **Preliminary TEA: Overall Performance Summary**

|                                                    | Case B5B | MR-AR<br>(No Sales) | MR-AR<br>(N2 Sales @<br>\$30/ton) | MR-AR<br>(Ar Sales<br>@ \$1.5/kg) | Target |  |  |
|----------------------------------------------------|----------|---------------------|-----------------------------------|-----------------------------------|--------|--|--|
| Performance Summary                                |          |                     |                                   |                                   |        |  |  |
| Carbon Capture                                     | 90.0%    | 91.0%               | 91.0%                             | 91.0%                             | N/A    |  |  |
| CO <sub>2</sub> Purity                             | 99.5%    | 99.7%               | 99.7%                             | 99.7%                             | 95%    |  |  |
| Net Power<br>Production (MWe)                      | 543      | 629                 | 593                               | 629                               | N/A    |  |  |
| COE (no T&S)<br>[\$/MWh]                           | 135.4    | 109.8               | 89.8                              | 89.1                              | 94.78  |  |  |
| CO <sub>2</sub> Captured Cost<br>(no T&S) [\$/ton] | 63.2     | 37.4                | 9.6                               | 9.2                               | N/A    |  |  |

## **Future Work**

#### **Experimental (on-going)**

• Continue to assess MR and AR experimental unit performance under live syngas conditions.

#### Modeling (on-going)

• Continue to assess MR and AR unit model performance in regions of the parameter space compatible with carried out experiments.

#### **Detailed TEA (Initiated)**

- Update the baseline IGCC process simulation based on revised baseline document.
- Update MR-AR IGCC process simulation with experimentally validated model.
- Update all plant cost elements and assess plant economics.

### **Publications**

- Margull Nicholas, Theodore T. Tsotsis and Vasilios I. Manousiouthakis. "On Multiscale Modeling and Simulation of a Novel Partial Pressure and Temperature Swing Adsorptive Reactor (PPTSAR) with Application to the Water Gas Shift Reaction." *Chemical Engineering Journal* (2022): 136161.
- Karagöz, Seçgin, Theodore T. Tsotsis, and Vasilios I. Manousiouthakis. "Multi-scale model based design of membrane reactor/separator processes for intensified hydrogen production through the water gas shift reaction." *International Journal of Hydrogen Energy* 45.12 (2020): 7339-7353.
- Pichardo, Patricia A., et al. "Techno-economic analysis of an intensified integrated gasification combined cycle (IGCC) power plant featuring a combined membrane reactor-adsorptive reactor (MR-AR) system." *Industrial & Engineering Chemistry Research* 59.6 (2019): 2430-2440.
- Karagöz, Seçgin, et al. "Multi-scale membrane reactor (MR) modeling and simulation for the water gas shift reaction." *Chemical Engineering and Processing-Process Intensification* 133 (2018): 245-262.

### **Publications**

- Pichardo, Patricia A., et al. "Technical economic analysis of an intensified Integrated Gasification Combined Cycle (IGCC) power plant featuring a sequence of membrane reactors." *Journal of Membrane Science* 579 (2019): 266-282.
- Karagöz, Seçgin, et al. "Multiscale model based design of an energy-intensified novel adsorptive reactor process for the water gas shift reaction." *AIChE Journal* 65.7 (2019): e16608.
- Karagöz, Seçgin, Theodore T. Tsotsis, and Vasilios I. Manousiouthakis. "Multi-scale modeling and simulation of a novel membrane reactor (MR)/adsorptive reactor (AR) process." *Chemical Engineering and Processing-Process Intensification* 137 (2019): 148-158.

### Acknowledgements

The contributions of Dr. Kunlei Liu, Dr. Dimitrios Koumoulis, and the whole University of Kentucky Center for Applied Energy Research (CAER) team, are gratefully acknowledged.

The financial support of the US Department of Energy, and the technical guidance by, and helpful discussions with, our Project Manager Katharina Daniels, and Mr. Andrew Jones, Mr. Walter W. Shelton, Mr. Travis R. Shultz, and Ms. Lynn Brickett are gratefully acknowledged.

## Questions