High Temperature Ceramic-Carbonate Dual-Phase Membrane Reactor for Pre-Combustion Carbon Dioxide Capture

Award No: DE-FE0031634

Jerry Y.S. Lin Arizona State University Tempe, Arizona

Kevin Huang University of South Carolina Columbia, SC

August 19, 2022

Overview

Timeline

- ✓ Project start date:
 Oct. 1, 2018
- ✓ Project end date:August. 30, 2022
- ✓ Budget Periods:
 - I: 10/1/2018-3/31/2020
 - II: 4/1/2020-9/30/2021

Budget

- ✓ Total project funding
 - DOE \$800,000
 - Cost-share: **\$200,007**
 - □ Total: **\$1,000,007**

Research Area 1

 ✓ Lab-Scale CO₂ Capture Development and Testing on Simulated Syngas

Partners

- ✓ Arizona State University (ASU)
- ✓ University of South Carolina (USC)

Technology Background Technical Approach and Project Scope

Membrane Reactor for IGCC Process with Pre-Combustion CO₂ Capture

Concept of Ceramic-Carbonate Dual-Phase (CCDP) Membrane

Typical Composition

<u>Ceramic phase:</u> $Ce_{0.8}Sm_{0.2}O_{2-\delta}$ Samarium Doped Ceria (SDC)

Carbonate phase: (Li/Na/K)₂CO₃

M Anderson & YS Lin, Proc. ICIM2006, pp. 678-681 (2006); J. Membr. Sci. 357, 122(2010)

Synthesis of Porous Ceramic Supports and CCDP Membrane

Carbon Dioxide Permeation Flux-Theory

TT Norton, B Lu & YS Lin, , J. Membr. Sci. 467, 244 (2014)

CO₂ Pressure Dependency of Permeation Flux

Progress Accomplishments and Current Status

Set-up and Module for High Temperature/High Pressure Membrane Reactor for WGS Reaction Tests

Fabrication of Dead-End Tubular $Ce_{0.8}Sm_{0.2}O_{2-\delta}(SDC)$ Supports

Cold Isostatic Press (CIP) method (dead-end tubes)

Green dead-end tube

Sintered dead-end tube (1200 °C)

Water Gas Shifting (WGS)

 $CO + H_2O \rightarrow CO_2 + H_2$

Tubular Membrane

Ceramic: $Sm_{0.2}Ce_{0.8}O_{1.9-\delta}$ (SDC) (Low Porosity) Carbonate: $Li_2CO_3/Na_2CO_3/K_2CO_3$ OD: 0.7 cm, ID: 0.5 cm, Length: 4.0 cm Wall thickness: 1 mm;

Reaction conditions

Temperature: 700-950 °C; Feed pressure: 1-15 atm; Sweep pressure: 1 atm Catalyst: Co-Mo-Mg(AlO2)₂ (SSK-10) (Haldor Topsoe) Feed side Space Velocity: 150-2100 h⁻¹ Sweep side: He: 50-200 mL-min⁻¹.

Results of WGS in Membrane Reactor – Effect of SV and S/C

with a catalyst at 850 °C, 7 atm, and S/C=4 at different space velocities (feed composition: 45.7:13.1:41.3:182.8 for $CO/CO_2/N_2/steam$).

with the catalyst at 900°C and 5 atm as a function of steam to carbon ratio (S/C). The permeate side was vacuumed at 85 mTorr, SV=500 1/h

Results of WGS in Membrane Reactors – Effect of Temperature and Pressure

Predicting Performance at High Pressure by Modeling from Low Pressure Experimental Data

WGS Reaction Kinetics

CO₂ Permeation Flux

Predicted Results of WGS Reaction in Membrane Reactor in Comparison with Experimental Data

Modeling Results at High Pressures

Modeling results for WGS reaction in CCDP MR with catalyst using a feed gas of $CO/CO_2/H_2/H_2O$ (22.6:8.7:21.5:45.2) at SV=700 h⁻¹ as a function of temperature and different total feed pressures.

Syngas Feed and Operation Conditions for Membrane Reactor (for 550 MW Power Plant)

Operating	Feed Gas	Steam		
conditions	(Syngas)	Addition		
Temperature (°C)	232	288		
Pressure (bar)	30	30		
Flow rates (mol/s)				
CO ₂	884	0		
CO	2296	0		
H ₂	2187	0		
H ₂ O	3545	1047		
Inert (including H ₂ S)	201	0		

Target for WGS for H₂ Production with CO₂ Capture

Baseline Case B5B

Ref: Cost and Performance Baseline for Fossil Energy Plants Volume 1: Bituminouscoal and Natural Gas To Electricity, **Netl-Pub-22638, Sept. 24, 2019** (dry-based)> 95.0%CO₂ capture> 90.0%

Performance of CCDP Membrane Reactor for WGS with CO₂ Capture in one Device

Key Parameter: Feed Pressure: 30 atm, Sweep Pressure: 1 atm, Temperature: 650-900°C

	CCDP Membrane CO ₂	Membrane surface area	Space	Sweep flow to feed
	permeance coefficient	to catalyst volume ratio	velocity	flow rate ratio (R)
	(α_k) (mol/s·m ² ·K)	$(\varphi)(\mathrm{m}^2/\mathrm{m}^3)$	$(SV) (h^{-1})$	(mol/mol)
Base Case	0.0052	234	250	0.83
Case 1	0.0125	234	700	1.42

Results of Membrane Reactor Meeting the Performance Criteria

	Average	CO conversion	C recovery	Dry-based
	\bar{J}_{CO_2}	(%)	(capture)	H ₂ purity#
	$(\text{cm}^3/\text{min.cm}^2)$		(%)	(%)
Base Case	0.5	95.01	94.12	91.86
Case 1	1.5	96.10	95.54	92.76

Temperature 750°C, CO_2 stream purity (dry base) is >99% because CCDP only permeates CO_2

Membrane Reactor for WGS for H₂ Production with CO₂ Capture

Process Design of Membrane Reactor for WGS

WGS System Design Configuration, Performance and Cost Comparison

550 MW Coal-Fired IGCC Power Plant: Gasified Syngas as Feed for WGS (819,302 M³/h)

Membrane fabrication capital cost

	Base Case	Case 1
Membrane Area (Mm²)	819,302	292,872
Membrane tubes #	4,429,022	1,583,375
Membrane cost (M\$)	355	130

MR System WGS + MEAWGS Trains HTS & LTS WGS Stages HTS WGS Reactors 9 12 WGS CO Conversion 0.95 0.95 30 bar 30 bar WGS Reactor Pressure **H-T SSK-10** H-T SSK-10 WGS Catalyst WGS Catalyst initial 3602 m^3 3279 m³ charge 764,425 m² Membrane area CO₂ Recovery Trains / 1 MEA Type Carbon Capture (%) 91.8 94.1 WGS Reactors 240 M\$ 951 M\$ CO₂ Recovery & Energy 287 M\$ 56 M\$ Total Plant 527 M\$ 1007 M\$

Tube dimension: 1 cm x 5 m

base case

Membrane reactor

Summary

- CCDP Membrane Reactor can enhance significantly WGS reaction with in-situ CO2 capture
- Performance of membrane reactor depends on membrane permeance, catalyst activity, and operation conditions (feed pressure, space velocity and membrane surface to catalyst volume ration)
- High pressure favors performance of the membrane reactor.
- At 30 bar and other conditions similar to fixed-bed reactor, the membrane reactor can meet WGS reaction/CO2 capture target without subsequent CO2 separation unit
- Membrane reactor process has much lower operation costs but higher capital costs compared to the conventional Process

Acknowledgement

NETL

• Katharina Daniels

ASU and USC

- Dr. Oscar Ovalle
- Prof. Gregory Raupp
- John Morgen
- Prof. Kevin Huang

Project Objectives

- To synthesize the chemically/thermally stable Ceramic Carbonate Dual-Phase (CCDP) membranes.
 - ✓ CO₂ permeance > 2000 GPU ($6.5x10^{-7}$ mol/m²·s·Pa)
 - ✓ Selectivity > 500
 - ✓ Resistant to H_2S
- To fabricate tubular CCDP membrane reactor modules.
 - ✓ High-temperature >700 °C
 - ✓ High-pressure > 20 atm
 - ✓ WGS membrane reactor applications.
- To identify conditions for WGS in membrane reactor with
 - ✓ 99% purity of CO_2 stream
 - ✓ 90% purity of H_2 stream