Plastic Additive, Sorbent-Coated, Thermally Integrated Contactor for CO₂ Capture (PLASTIC4CO2) DEFE0032132 Dr. Albert Stella **Principal Engineer GE** Research

> U.S. Department of Energy National Energy Technology Laboratory Carbon Management Project Review Meeting August 15 - 19, 2022

Program Overview

Program Team

Additive Contactor Design & Production, Sorbent and Binder Coating Integration, Small & Large Coated Parts Testing & Process & Techno-Economic Modelling

Metal Organic Framework Sorbent Synthesis, Characterization & Testing, Sorbent Integrated Parts Testing

Covalent Organic Framework Synthesis, Characterization & Testing

UNIVERSITY OF SOUTH ALABAMA Multi-Component Adsorption & Kinetics Characterization \$2.5MM program (40% cost share)2 Year Program POP 02/25/22 to 12/31/23

Program Participants

- GE Research
- TDA Research
- University of California, Berkeley
- University of South Alabama

Demonstrate TRL3 feasibility for a plastic additive contactor design that captures 90-95% of CO₂ from a natural gas turbine and demonstrates 15% lower LCOE vs. current liquid amine capture systems

Additive Concept for NGCC Plant

Demonstrate 40% lower CAPEX to get 15% lower LCOE

From Sorbent to Coated Contactor

Molecular structure drives system performance

Technical Approach 3 Program Components for TRL3

Understand components first then combined system

TDA Sorbents 1 (MOF) & 2 (SSSA)

Uptake loadings for TDA SSSA-1 Surface Stabilized Supported Amine

~ 5 wt.% CO₂ uptake and fast kinetics

UCB Sorbent 3 (COF-609)

~ 5.7 wt.% CO₂ uptake and kinetics TBD

Kinetic Measurements

Frequency response quantifies the rate of CO₂ transport using as little as 5 mg of material

VERSITY OF

With the transport rate, and an isotherm, system modeling and technoeconomic evaluations can be completed

Measured Sorbent Capacity and Kinetics

Sorbent Productivity

- Productivity is a function of CO₂ capacity and uptake rate (CO₂/sorbent/time)
- Measured with isotherm and kinetic uptake data
- Main driver for contactor sizing and cost (CAPEX)
- Understand as a function of temperature
- Set minimum based on preliminary TEA for 15% lower LCOE
- Update with future sorbent development (other programs)

Determined requirements for sorbent productivity

Additive Contactor Design

Questions

- Need to determine hydraulic diameter for flow
- What is minimum wall thickness achievable
- Thinner walls desirable for heat transfer and minimizing mass of the contactor
- What is the surface roughness note desire to coat surface enhanced with some roughness
- Make the parts modular so that the unit can be constructed of pieces.

Critical to Quality (CTQ's) for Parts

- Non-porous surface between channels
- Good sorbent adhesion
- Pressure capable to 2 bar steam @135°C
- Sealable parts to prevent leakage
- > 1 year lifetime
- Scalable and integration into larger structures
- Cost competitive with traditional contactor designs at scale

TEA to determine cost targets for contactor at scale

Materials & Matched Modalities

Thermoplastics (130-190°C HDT)

Thermoplastic materials	Chemical structure	Morphology/HDT@264psi	3D print modality			
Polyamide 12 glass filled, (PA12	2 GF) $\left[\ddagger \qquad $	Semicrystalline, ~134°C	Powder sintering			
Polypheneylsulfone (PPSU)	+	Amorphous, ~ 189	Fused filament			
	о он,					
Polyetherimide (PEI)	$+\frac{1}{2}$	Amorphous, ~ 153	Fused filament			
Poly(ether ether ketone) (PEEK		Semicrystalline, ~ 147	Fused filament			

Thermoset Resins (140-230°C HDT)

Material Acronym	Material type						
3D 3860							
IND147 HDT230	Propriotory Plands of Poly						
3D3955	enviore methodrulate and						
HTM140V2	acrylate, methacrylate and						
НТ	acrylic esters						
SOMOS Perform							

Printing Modality Options by Material

Material	Multi-Jet Fusion (MJF)	Laser Sintering (SLS)	Fused Filament Modelling (FFM)	Photo- polymerization
PA12	2	1	1	
PA12 glass fill	1	1		
PA12 carbon fill		1		
PEEK		1	3	
PEI			2	
PPSU			2	
3D 3860				1
IND147 HDT230				1
3D3955				1
HTM140V2				1
HT				1
SOMOS Perform				1

Flow Testing Systems

- Small-scale test Unit
 - Lab scale up to 2 SLPM
 - Up to 6 combined gas feeds to simulate mixtures and up to 80% RH
 - Desorption using electrical heat
 - Data Acquisition
 - Large-scale test unit
 - Bench scale flows up to 30 SLPM
 - Up to 6 combined gas feeds to simulate mixtures and up to 80% RH
 - Desorption using electrical or steam media

AI-1408_CO2 AI-7208_CO2 AI-8308_CO2

Group

• Data Acquisition, automated cycling

Flexible capabilities to test CO₂ uptake vs. flow and [CO₂]

21-00:00 00-00:00 03-00:00 06:00:00 09:00:00 12:00:00 15:00:00 11 01/29/22 01/30/22 01/30/22 01/30/22 01/30/22 01/30/22 01/30/22 01

0D, 1D and 3D Flow Models

- 0D homogeneous sorbent working capacity and kinetics
- 1D model PDE hydraulic diameter of channel
- 3D model PDE full dimensions in relevant coordinates

Solve PDE in 1D (fast) and 3D (more accurate) to get contactor sizing

0D Contactor Sizing & Economics

0D Model Inputs

- 7F 2x1 NGCC flows & power
- 90-95% CO₂ removal
- 1 mm sorbent coating
- Sorbent working capacity
- Sorbent utilization
- 30-minute cycle time
- CO₂ and H₂O isosteric heats
- ΔT (adsorb-desorb)
- Sorbent/costing costs
- Contactor costs (\$/m²)
- Coating life
- Plant lifetime

0D Model Outputs

- Contactor CAPEX
- BOP CAPEX
- Process OPEX
- Process net power & efficiency
- Updated LCOE vs Case B31B

Initial costing landscape to be then better defined by 1D/3D models

Opportunities for Collaboration

Program is sorbent agnostic and aims to reduce cost of system

- Incorporation of high-productivity sorbents into the contactor design
- Sorbent scale-up and manufacturing
- Sorbent coating processes at scale (dip, spray, ...)
- Additive printing processes and scaling
- Polymer materials research in additive systems and lifetime studies
- CO₂ sequestration and utilization applications
- NGCC utility engineering studies
- NGCC CCUS demonstration programs

Future Scaling of Additive Contactor Systems

Scale Size	TRL	Flue Gas Flow (tph)	Program
Laboratory	3	1.5e-3	FE0032132
Bench	4	1.9e-2	Future - Demo
Process Dev 1	5	0.40	Future - Demo
Process Dev 2	6	19	Future NCCC
Pilot	7-8	380	Future – Utility site
First Commercial Plant	9	3,800	Future – Utility site
Commercial Multi-Plant	9	3,800/plant	Future – Multi-site

Scaling Progression & Challenges

- Higher productivity sorbents
- Synthesis of sorbents at each scale
- Material & printing costs for additive contactors at each scale
- Additive infrastructure growth
- System Integration
- Contactor and sorbent lifetime
- Maintenance/replacements

PLASTIC4CO2 Summary

Sorbents - 2022

- ✓ Set targets for sorbent productivity to meet initial TEA
- Sorbent production at 1 Kg scale
- Characterization of sorbent performance for capacity and kinetics

Coatings - 2022

- Develop systems for current sorbents on candidate plastic plates
- Test coating adhesion vs. plate morphology

Additive Contactor 2022-2023

- ✓ Completed design of 2-channel trifurcating architecture
- ✓ Identified candidate plastics and associated printing modalities
- ✓ Printed test parts in PA12 GF for both materials and coatings studies
- Print test parts in other candidate materials
- Develop model frameworks for sizing and TEA
- Coat and test additive contactor parts for performance at NGCC conditions
- Comparison to liquid phase system and conventional contactor system
- Determine metrics for additive contactor to compete at scale

Back-Up Information

From Sorbent to Contactor to System

TRL 1-2 Prior Work

- Sorbent characterization
- Additive design
- Coatings studies
- System models/costs

- Sorbent development
- Material synthesis
- Sorbent characterization
- System models

- Sorbent development
- Material synthesis
- Sorbent characterization

- Frequency response
- Kinetic modelling

TRL 3-4 FE0032132 PLASTIC4CO2

- Contactor Design
- Candidate plastics
- Printing methods
- Coating development
- Sorbent integration
- Initial techno-economics

- Optimize Design
- Scaled process
- Model refinement.
- Sorbents at scale
- Coatings at scale
- Printing at scale
- Economic validation

Requirements for 40% lower CAPEX and 15% lower LCOE

How to scale additive processes at lower cost

Risk Mitigation

- Sorbent performance issues
 - Characterize batches before next synthesis
 - ✓ Understand materials & process variation
 - ✓ Synthesis process control
- Coating adhesion/cracking
 - ✓ Coupon testing understand nature of cracks
 - Surface preparation and roughness modification
 - ✓ Adhesion promotors & viscosity modifiers
- Coating performance issues
 - ✓ Optimize coating capacity vs thickness
 - ✓ Understand materials & process variation
 - Explore variety of materials options
 - ✓ Coupon testing in Test Rig 2 for screening
- Plastic part properties/lifetime
 - ✓ Polymer fillers
 - ✓ Molecular weight & % crystallinity options
 - \checkmark End capper options
- Energetics
 - ✓ Wall thickness, & hydraulic diameter design
 - Material density and heat capacity options
- Costs and scaling
 - Set cost targets to compete at scale

	Risk Rating								
Perceived Risk	Probability	Impact	Overall	Mitigation/Response Strategy					
Financial Risks:									
Budget overrun	L	М	L	Focus on critical tasks to achieve milestones					
Cost/Schedule Risks:									
Changes in applied labor rates	L	L	L	Work with GE finance; update plan accordingly					
	Techn	nical/Sco	pe Risks:						
Poor cyclability, volumetric productivity, capture efficiency, and adhesion of sorbent-coated plastic contactor	М	Н	Н	Improve contactor surface properties, sorbent-binder formulations, coating/curing processes					
Sorbent and contactor scalability; manufacturing, economic and process inefficiencies	М	Н	Н	Early and iterative TEA. Leverage GE Additive & Gas Power experience in fluid contactors for mechanical systems					
Suboptimal contactor component form and function results in inefficient heat transfer	М	Н	М	Leverage GE Additive and GE Aviation heat exchanger expertise to balance wall thickness, hydraulic diameter, and alternative materials of construction (fillers)					
Additive printing method does not provide mechanical stability required for trifurcating design	М	М	М	Evaluate alternative materials of construction including polymers & Al					
Additive printing method does not provide spatial resolution required for trifurcating design	L	М	L	Evaluate alternative polymers and printing methods					
Ma	nagement, Pla	anning, a	nd Overs	ight Risks:					
Availability of key personnel	L	М	L	Project/resource prioritization with leadership					
Ineffective selection of contactor design, sorbent-binder formulations & coating processes	L	М	L	Leverage Six Sigma statistical tools and detailed success criteria to down select and advance technologies					
ES&H Risks									
Potential for chemical hygiene, high temperature, or mechanical hazard near misses or incidents	L	Η	L	GE, Berkeley, TDA and USA will employ rigorous institutional standards & processes; leverage EHS personnel to ensure safety and compliance					
	Ex	ternal Fa	ictors						
COVID-19 pandemic hinders partnering & supply chain	L	L	L	Leverage virtual communication tools; work with vendors and sourcing to ensure timely delivery					

Additive Printing Modalities

Photopolymerization SLA, DLP, CLIP	Extrusion FDM, FFF	Jetting Polyjet, Multijet	Powder Bed Fusion SLS, MJF
formlabs.com/fdmslasls	formlabs.com/fdmslasls	 stratasysdirect.com/technologies/polyjet 	formlabs.com/fdmslasls
Selective curing of layers of photopolymer resin using laser or DLP	Plastic filament from a spool is extruded through moving heated	Inkjet printheads drop liquid material where needed. Droplets solidify	Bed of polymer powder is fused one layer at a time using a laser or other opergy source
Single material system – support structures same cured polymer as part Materials: Liquids –	Two material system – support structures are different material from part	Multi-material system – support material is different from one or	Single material system – unfused powder acts as support structure
acrylates, epoxies	Materials: Thermoplastic filament	more build materials Materials: UV cured liquids, wax	Materials: Thermoplastic polymer powder
SLA Stereolithography DLP Digital Light Processing CLIP Continuous Interface	FDMFused Deposition ModellingFFFFused Filament Fabrication		SLS Selective Laser Sintering MJF Multi Jet Fusion

Liquid Production

Understanding Test Articles

- Printing modalities will give different cross-sectional structures
- Each test configuration will give different stress-strain curve for failure

Test Type 5 articles in each configuration, modality and material to understand strass/strain relationship at desorption T

Appendix

Program Organization Chart

Program Gantt Chart

<u>Pl</u> astic <u>A</u> dditive, <u>S</u> orbent-coated, <u>T</u> hermally- <u>I</u> ntegrated <u>C</u> ontactor <u>For CO</u> ₂ Capture (PLASTIC4CO2)		ЪА	UC-Berkeley USA		Budget Period 1			1	Budget Period 2		
	= owner					202	2		202	23	_
	_				Q1	Q2	Q3 Q	<u>4 Q1</u>	Q2	Q3	Q4
Task 1.0. Project Management and Planning	•										
1.1. Project Management Plan (PMP)	•				$\overline{\mathbf{\nabla}}$						
Deliverables: updated PMP 30 days after award; Progress, Jinancial & Jinai reports, reviews, presentations.					v			_			
1.2. Technology Maturation Plan (TMP)	•				1	,					
Deliverables: updated TMP 90 days difter awara; final TMP within 90 days of program completion					l 4		- -	∇	+ +	ل ہ ج	, 4
Deriverables: Quarterly, financial & final reports, reviews, presentations.					Ϋ́	Y	Υ	~ `	ΥY	ſŸ	Ť
Task 2.0. Sorbent Synthesis & Characterization	•	•	•	•		-					
2.1 Produce 1 kg of candidate sorbents 1, 2 for initial screening	•	•									
2.2 Optimize production process and produce 5 kg of candidate sorbents 1, 2 for testing	•	•						•			
2.3 Produce additional 5 kg of candidate sorbents 1, 2 for larger scale testing	•	•							4		
2.4 Testing of sorbents 1 &2 for kinetic parameters	•			•							
Milestones: 1kg, 5 kg and a maximum of 4 kg of sorbent candidate 1 & 2 meeting performance criteria						- •	•	_ `	P		
2.5 Produce 0.5 kg of candidate sorbent 3 and optimize production process	•		•			-		۹			
2.6 Produce 0.5 kg of additional candidate sorbent 3	•		•								
2.7 Testing of sorbent 3 for kinetic parameters	•			•							
Milestones: 0.5 kg and additional 0.5 kg of sorbent candidate 3 meeting performance criteria							•	_			
Task 3.0 Develop 3-D Printed Plastic Contactor Components	•										
3.1 Determine contactor physical/chemical properties and design configuration	•										
Milestone: PLASTIC4CO2 design and component sizing determined						•					
3.2 Determine candidate plastics and additive printing modality	•										
Milestone: Candidate plastics and printing modality selected					_	- 1					
3.3 Produce candidate contactor components	•										
Milestones: Alpha- and beta-prototype plastic contactor components fabricated							T L				
3.4 Screening testing to determine stability of plastic parts for down-selection	•							•			
3.5 Extended testing of down-selected parts for aging/lifetime studies	•										
Decision Point: Parts down-selected for extended physical and chemical properties testing											
Milestone: Contatctor Parts that meet long term physical and chemical properties											
Task 4.0 Produce Sorbent-Integrated Contactor	•			٠							
4.1 Develop coating formulations and processes	•										
Milestone: Sorbent-coating formulation determined for each candidate plastic							•	_			
4.2 Create alpha integrated parts for kinetics	•										
4.3 Testing of alpha integrated sorbent system for kinetics	•			•							
4.4 Create beta integrated parts for testing	•										
4.5 Testing of beta integrated parts for kinetics	•			٠							
Milestones: Alpha- and beta-prototype coated contactor components fabricated								1			
Decision Point -Integrated contactor compenent systems dowselected for beta testing								•			
Task 5.0. Fabrication and Testing of Sorbent-Integrated Contactor System	•	•									
5.1 Design and procure upgrades to current testing apparatus	•	•									
Milestone: Test apparatuses for contactor compent testing constructed							•				
5.2 Develop testing protocol	•	•									
Milestone: Methodology for testing parts finalized							•	_			
5.3 Test alpha integrated parts	•	•									
5.4 Test beta integrated parts	•	•									
Milestone: Bench-scale, sorbent-integrated contactor meets performance metrics											•
Task 6.0. Contactor Techno-Economic Model	•										
6.1 Preliminary system model to determine contactor requirements	•										
6.2 Refined system model for cost analysis and contactor scaling requirements	•										
Deliverable: Final State Point Data Table and PLASTIC4CO2 capital and operating cost models											$\overline{4}$
			∇	= del	ive rabl	e	♦ = r	nileston	e 📕	= dec	isio

point