Development and Bench-Scale Testing of a Novel Biphasic Solvent-Enabled Absorption Process for Post-Combustion Carbon Capture (DE-FE0031600)

Yongqi Lu, Paul Nielsen, Hong Lu University of Illinois at Urban-Champaign

2022 Carbon Management Project Review Meeting

August 18, 2022

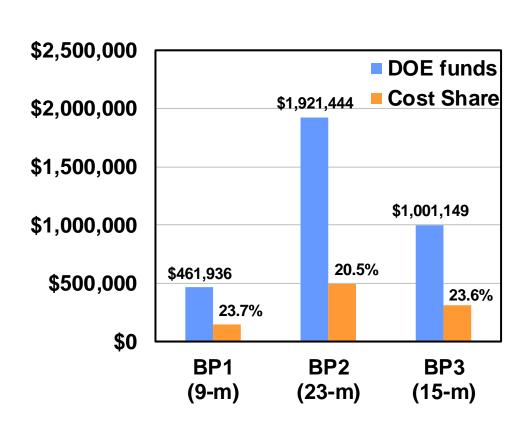
Project Overview (1)

Objectives:

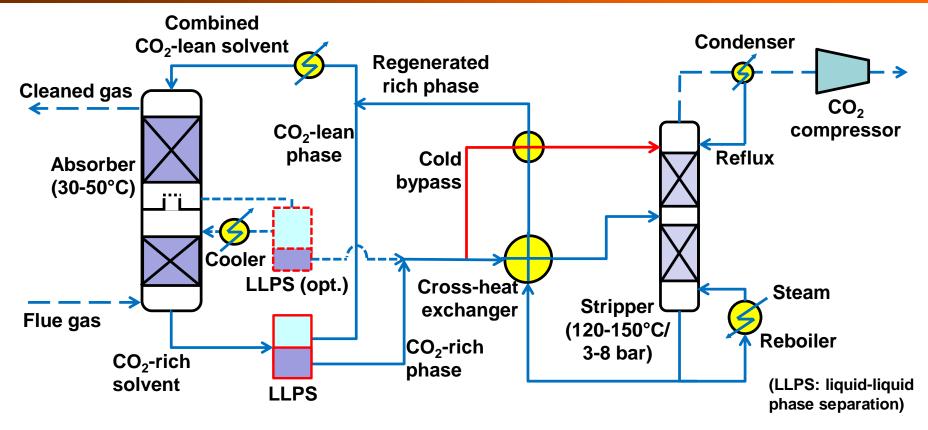
- Design, fabricate, and test an integrated 40 kWe bench-scale unit for post-combustion carbon capture, and
- Demonstrate the technology performance progressing toward achieving DOE's Transformational Capture Goals

Participants:

- University of Illinois:
 - Prairie Research Institute (ISGS & ISTC): Solvent & process development, testing, and evaluations
 - > Facilities & Services: Bench-scale unit installation
 - > Abbott Power Plant: Host site
- Trimeric Corporation: Process design/equipment specs; TEA support
- ITG Henneman Engineering: Detailed engineering design; startup support


Project Overview (2)

Project Duration: 4/6/18–8/31/22


- BP1: 9 mon (Apr 2018 Dec 2019)
- BP2: 23 mon (Jan 2019 Nov 2020)
- BP3: 15 mon (Dec 2020 Aug 2022)*
- (* Currently in a request for a 6-mon extension to perform additional testing)

Funding Profile:

- DOE funding of \$3,384,529
- Cost share (in-kind and cash) of \$949,741 (~22%)

Technology Background: Biphasic CO₂ Absorption Process (BiCAP)

Impact on absorber:

- Higher absorption rate compared with MEA
- Applicable for high-viscosity solvents via multi-stage LLPS to enhance rate

Impact on stripper:

- Reduced solvent mass to stripper leads to low sensible heat use and small equipment size
- Enriched CO₂ loading leads to high stripping pressure (i.e., low stripping heat and CO₂ compression work)
- Cold bypass further reduces stripping heat

Novel Biphasic Solvents Developed from Previous Work

Biphasic solvents:

- ☐ Tunable partitions of volume and species in two liquid phases
- CO₂ loading highly concentrated (>98%) in rich phase
- Water-lean (<30% water)</p>

Two top-performing solvents identified from a previous screening study of ~80 solvents

Phase Equilibrium and Rate

- Desorption working capacity:
 2X of MEA
- Absorption rate: 50% > MEA

ΔH_{abs-CO2}

and Total

Heat Duty

Solvent Availability /Cost

All components commercially available

Criteria

Reboiler heat duty: 30-50% < MEA in 10 kWe lab tests

Equipment Corrosion

Oxidative & Thermal Stabilities CO₂-saturated heavy phase viscosity: ≤45 cP @ 40°C

2-3X less corrosive than MEA under both absorption & desorption conditions (<20 μm/yr for carbon steel)

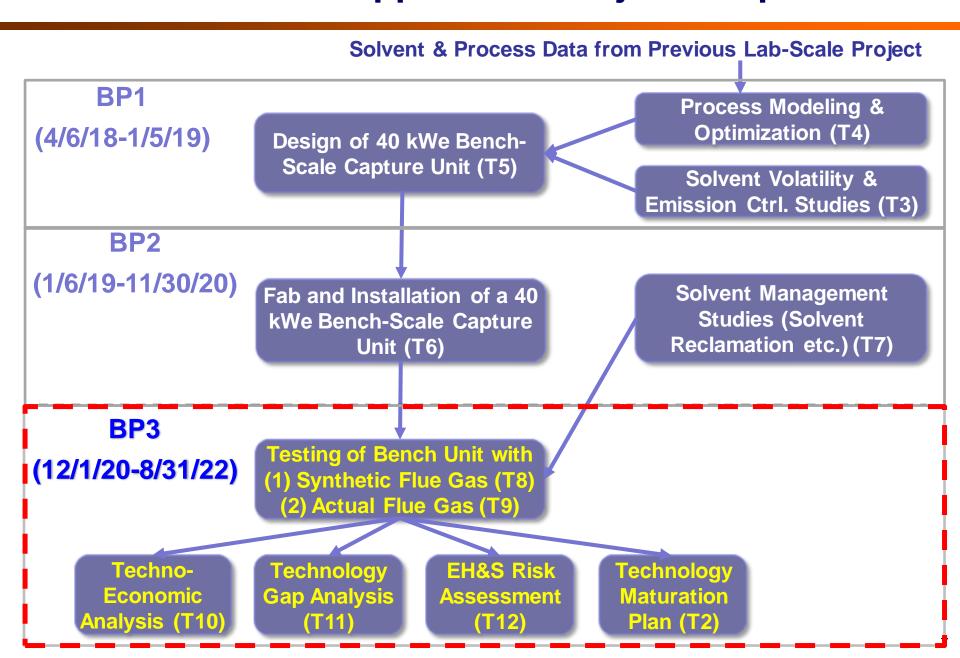
- Thermal stability at 150°C ≈ MEA at 120°C (4-w testing)
- Oxidative stability 8X > MEA at 50°C (10-d testing in 96% O₂)

Progression of BiCAP Technology Development

- Lab proof-ofconcept studies of biphasic solvents
- Funding: UI (Graduate dissertation research)

- Solvent screening& characterization(~80)
- 10 kWe lab scale:Separate absorber& stripper testing
- Funding: DOE / UI

- 40 kWe bench scale:Closed-loop system at Abbott Power Plant
- Solvent handing studies (aerosol emissions, reclamation, etc.)
- Funding: DOE / UI

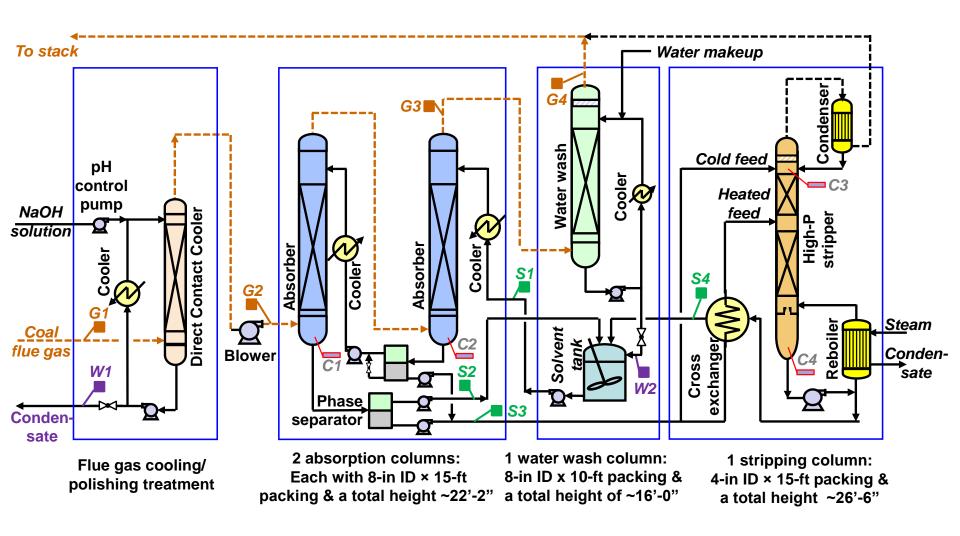

Jan 2013

Jևl 2015 Aþr 2018 Aug 2022

Prior Work

Current Project

Technical Approach / Project Scope



Main Milestones and Success Criteria

	Basis for Decision/Success Criteria						
BP1	✓ Solvent emissions (vapor & aerosols) and mitigation assessed						
(4/6/18-	✓ Power plant Host Site Agreement issued						
1/5/19)	✓ Completion of 40 kWe bench unit design						
BP2	✓ Identify suitable options for reclamation of biphasic solvents						
(1/6/19- 11/30/20)	✓ Fabrication and installation of 40 kWe bench-scale unit						
	√ 7-mon parametric testing with synthetic flue gas completed in May-						
	Dec 2021						
BP3	✓ 2-week continuous testing with a slipstream of coal flue gas at Abbott						
(12/1/20-	Power Plant completed in Jan-Feb 2022						
8/31/22)	✓ TEA studies performed and a topical report submitted in June 2022						
	(Demonstrated continuous operation with a heat duty of ≤2,200 kJ/kg of						
	CO ₂ and stripping pressure of ~65 psia)						

Additional 3-week slipstream testing (not part of the original project scope) is currently under planning

Specs of the 40 kWe Bench-Scale BiCAP Unit

Translating Lab to Bench Scale Phase Separator

- Phase separation based on static settling with a density difference in two liquid phases
- Level of liquid-liquid interface automatically stabilizes based on a static pressure balance

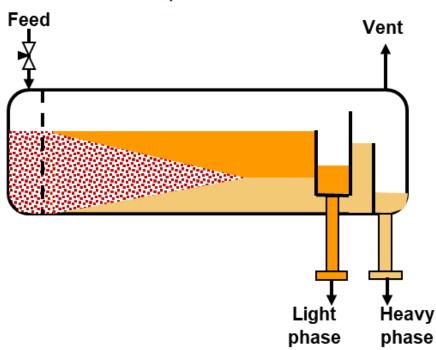
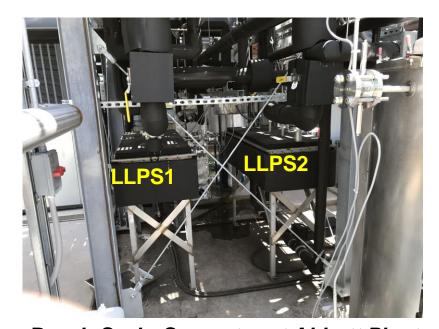
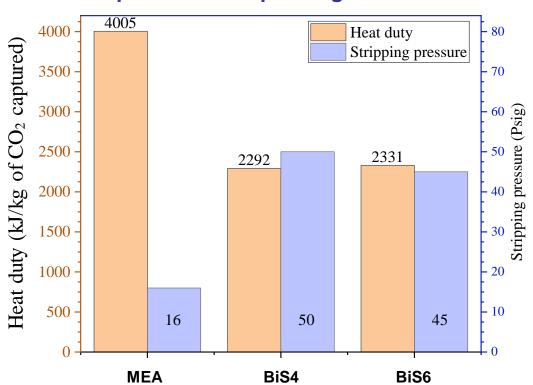



Illustration of Phase Separation Operation

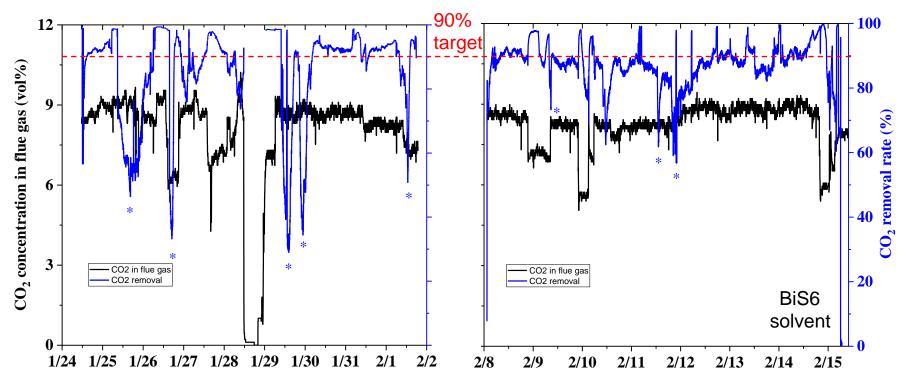
Lab-Scale Phase Separator


Bench-Scale Separator at Abbott Plant

7-Month Parametric Tests for MEA, BiS4 and BiS6 Solvents with Synthetic Flue Gas (CO₂ + Air), May to Dec 2021

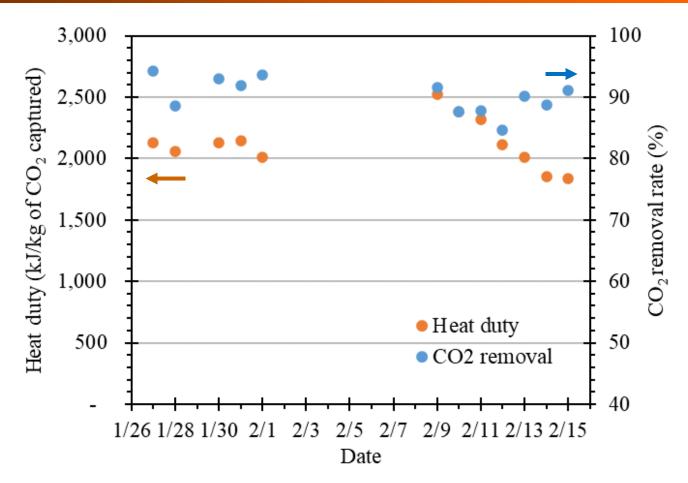
Operating parameters examined included:

- Gas flow rate
- □ CO₂ vol% in flue gas
- Solvent flow rate
- □ L/G ratio
- □ CO₂ loadings
- % of cold solvent feed
- Stripping P
- Striping T


Comparison of BiS4, BiS6 and MEA at representative operating conditions

At representative conditions:

- ☐ Heat duty of either BiS4 or BiS6 was ~40% < MEA
- ☐ Higher stripping pressure for BiS4 or BiS6 led to a lower CO₂ compression work requirement


2-Week Continuous Testing with a Slipstream of Abbott Coal Flue Gas, Jan to Feb 2022

(* Drops in CO₂ removal rate caused by steam supply interruption during these periods)

- CO₂ concentration in Stoker boiler coal flue gas: 6.5-9.0 vol% (wet basis)
- □ CO₂ removal fluctuated within 85-95% (90% removal is project target)
- 95% CO₂ removal achievable via adjusting operating conditions

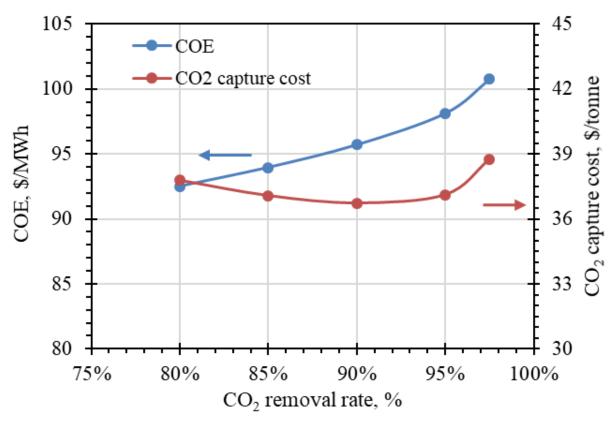
Daily Average CO₂ Removal Rate and Heat Duty During the 2-Week Slipstream Testing

- □ CO₂ removal rate within 85-95% during the two weeks
- □ Heat duty ranged from 1,838 to 2,527 kJ/kg of CO₂ captured (based on a cross exchanger temperature approach of 9 °F)
 - Two-week average heat duty of 2,183 kJ/kg of CO₂ captured

Energy Comparison of BiCAP vs. DOE Base Cases

	Units	DOE Case B12A (SCPC, No Capture)	DOE Case B12B (Cansolv)	BiCAP (with BiS6)		
Energy requirements						
Net Electricity Produced	MWe	650	650	650		
HHV Net Plant Efficiency, %	%	40.3%	31.5%	33.2%		
CCS De-rate						
Compression & Dehydration	MWe	0	44.4	29.1		
Pumps, Blower, etc.	MWe	0	27.3	21.9		
Regeneration Steam De-rate	MWe	0	105.4	90.6		
Total De-rate by CCS	MWe	0	177.1	141.6		
Base Plant Auxiliary Load	MWe	35.1	48.3	40.3		

[□] Capture de-rate for BiCAP: ~20% < Case B12B (Cansolv)</p>


Cost Comparison of BiCAP vs. DOE Base Cases (2018\$)

ltem	Unit	DOE Case B12A (no capture)	DOE Case B12B (Cansolv)	BiCAP with BiS6 solv.
Net power output	MWe	650	650	650
Capital costs				
Total Plant Cost (TPC)	\$/kW(net)	2,099	3,800	3,376
Total Overnight Costs (TOC)	\$/kW(net)	2,582	4,654	4,180
Total As-Spent Costs (TASC)	\$/kW(net)	2,981	5,372	4,824
O&M costs				
Total Fixed Operating Costs	MM\$/year	45.9	78.1	70.4
Total Variable Operating Costs	MM\$/year	37.4	67.8	59.9
Fuel	MM\$/year	91.3	116.7	111.2
Cost of Electricity (COE)				
COE - No TS&M	mills/kWh	64.4	105.3	95.3
COE - Total (including TS&M)	mills/kWh	64.4	114.3	104.2
Increase in COE - No TS&M	%	n/a	63.5%	48.0%
Increase in COE - Total	%	n/a	77.5%	61.8%
Cost of CO ₂ Capture - No TS&M	\$/tonne	n/a	45.73	36.73
Cost of CO ₂ avoidance – W/TS&M	\$/tonne	n/a	73.64	58.92

BiCAP compared to Case B12B (Cansolv):

- □ COE reduced by 9.5%; CAPAX reduced by 10.2%
- □ CO₂ capture cost (i.e., breakeven sales price) reduced by 19.7%

Sensitivity Analysis for CO₂ Removal Rate

(CO₂ removal rate varied by varying L/G ratio)

- □ COE increased by 2.5% from 90% to 95% CO₂ removal
- □ Cost of CO₂ capture was minimum at ~90% removal; No substantial increase of cost of CO₂ capture from 90% to 95% CO₂ removal

Plans for Future Work in This Project

Remaining work in the following 3-6 months:

- Additional Slipstream Testing at Abbott Power Plant (for ~3 weeks)
- ☐ EH&S Risk Assessment
- Technology Gap Analysis
- Technology Maturation Plan

Plans for Next Stage Development after This Project

10 kWe Testing, Laboratory

Solvent study, Laboratory

Separate
Absorber /
Stripper

> Funding: DOE/ UI (2015-2018)

Proof-of-Concept Funding: UI (Part of Dissertation Research, 2013-2015)

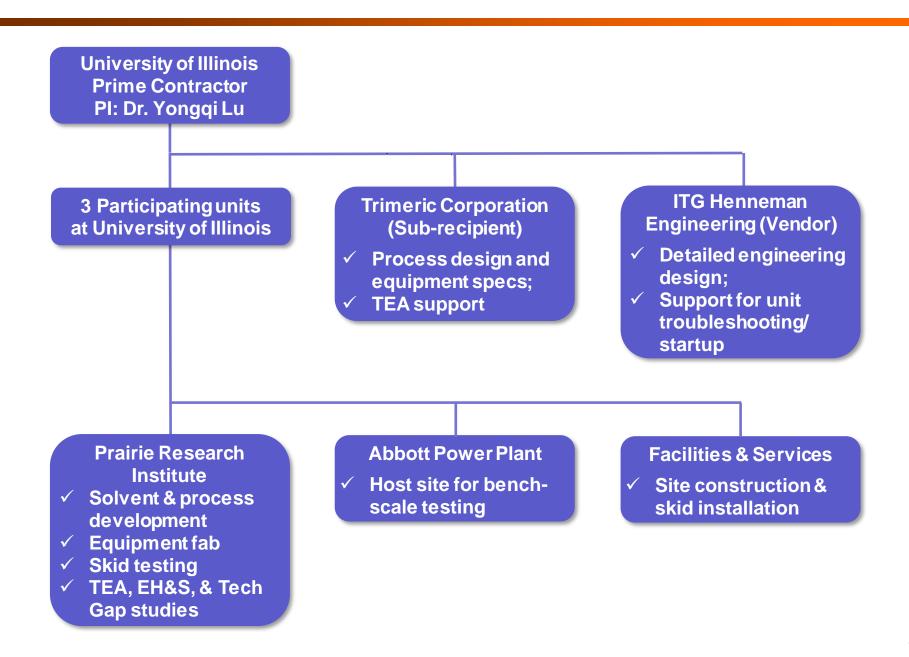
Current Project

40 kWe Testing, Coal-Fired Power Plant Slipstream

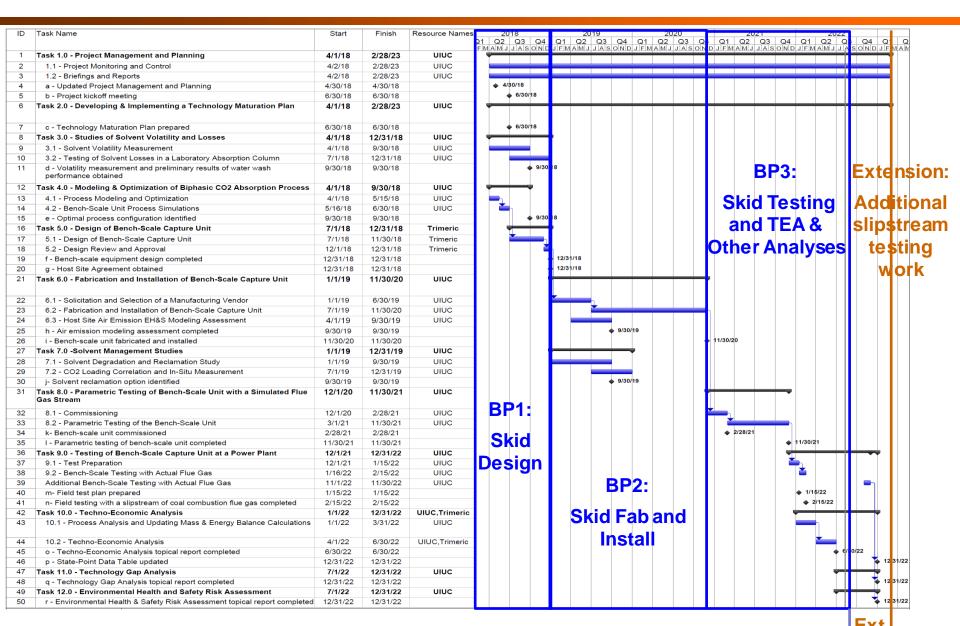
Bench Scale Close-Loop Unit **Funding**: DOE/ UI (2018-2022) Small pilot (40 kW-0.5 MW), NGCC Plant

Small pilot/pilot, industrial sources (e.g., waste-to-energy, cement, steel)

Pilot (0.5-1 MWe), Coal-Fired Power Plant /Test Center


Summary

- □ Biphasic solvents developed based on multiple practical criteria for postcombustion CO₂ capture
- ☐ Testing of a 40 kWe unit at Abbot Power Plant:
 - Continuous operation validated with coal slipstream testing in Mid-West wintertime
 - > ~90% CO₂ removal (95% CO₂ removal achievable)
 - ➤ Average heat duty of 2,183 MJ/tonne of CO₂ captured
- BiCAP shows techno-economic advantages over DOE base case
 - ➤ Parasitic power loss reduced by ~20.0%
 - ➤ CO₂ capture cost reduced by ~19.7% (\$36.7/tonne)
- Next step: Small pilot/pilot testing for NGCC, industrial sources, and coal boilers


Acknowledgements

- DOE/NETL Project Managers: Katharina Daniels; Andrew Jones
- Project Team Members
 - ✓ University of Illinois: Paul Nielsen; Hong Lu; Hafiz Salih; Justin Mock; Luke Schideman; Eric Roman; Drew Feldstein; Kevin O'Brien; Wei Zheng; Sarmila Katuwal; Scott Prause; Bajio Varghese Kaleeckal; Ryan Larimore; Jason Dietsch; Stephanie Brownstein; Vinod Patel; Mike Larson; Mike Brewer; Josh Rubin; Mohamed Attalla
 - ✓ Trimeric Corporation: Ray McKaskle; Katherine Dombrowski; Kevin Fisher
 - ✓ ITG-Henneman: David Kryszczynski; Darren Timlin

Appendix 1. Organization Chart

Appendix 2. Gantt Chart

wor