Rational Development of Novel Metal-Organic Polyhedra-based Membranes for CO₂ Capture

DE-FE0031736

Haiqing Lin University of Buffalo, SUNY

U.S. Department of Energy National Energy Technology Laboratory Carbon Management Project Review Meeting August 15 - 19, 2022

Project Overview

- Funding (DOE \$2,857,896 and Cost Share \$975,484)
- Overall Project: 7/1/2019-6/30/2024
- Project manager: Krista Hill
- Overall Project Objectives
 - Rationally develop solubility-selective mixed matrix materials comprising polar rubbery polymers and metal organic polyhedra (MOPs);
 - Develop thin film composite membranes achieving high CO₂ permeance (3000 GPU) and high CO₂/N₂ selectivity (50);
 - Demonstrate separation performance and stability with raw flue gas at NCCC; and
 - Perform techno-economic analysis on the membrane processes.

BPs and Team Members

- **BP 1:** Rationally design and prepare freestanding **mixed matrix films** with CO_2 permeability of 1000 Barrer and CO_2/N_2 selectivity of 75 and CO_2/O_2 selectivity of 25 (7/19 6/21)
- **BP 2:** Prepare and optimize thin film **mixed matrix composite membranes** with CO_2 permeance of 3000 GPU and CO_2/N_2 selectivity of 50 and CO_2/O_2 selectivity of 20 (7/21 6/23)

BP 3: Prepare bench-scale spiral-would membrane **modules** and perform **field tests with real flue gas** at NCCC; and complete the **techno-economic analysis (7/23 - 6/24)**

Members	Role
IID	Materials
UВ	development
Caltach	Computational
Cantech	simulation
זתת	Polymer synthesis
KPI	scale-up
	Membrane
MTR	development &
	field test
Trimeric	TEA
NCCC	Host site

Promise of Membranes for Postcombustion Carbon Capture

- Low pressure and air sweep design
- Hybrid of membrane and cryogenic units

Merkel, Lin, Wei, and Baker, J. Membr. Sci., 359, 126 (2010)

State-of-the-Art Polymers for CO_2/N_2 Separation

Hu, Clark, Alebrahim, and Lin, J. Membr. Sci. (2022) 644, 120140

Our Approach: Sorption-Enhanced MMMs

- CO₂-philic rubbery polyethers
- Porous metal organic polyhedra (MOPs)

Design and Prepare Functional Polyethers

10 – 50 g/batch production had been demonstrated

Functional Polyethers with Different Oxygen Contents and Chain End Groups

Polymers	CO ₂ permeability (Barrer)	CO_2/N_2 selectivity
PDXLA8	220	56
POM4-ran-PDXLA8	140	61
POM12- <i>ran</i> - PDXLEA21	422	58
PDXLA8-acetyl	390	51
Poly(DXL-5-Ots)	212	53

POM12-ran-PDXLEA21

Temp.	Permeability	$\rm CO_2/N_2$	
(°C)	CO_2	N_2	selectivity
25	154	1.9	81
35	422	7.6	58
60	1330	40	39

Poly(DXL-5-OTs)

Metal-Organic Polyhedra (MOPs)

- 2 5 nm
- Soluble in solvents

Advanced Materials for CO_2/N_2 Separation

PDXLA8

Poly(ethylene glycol) dimethyl ether (PEGDME)

PEGDME (wt%)	T _g (°C)	CO ₂ permeability (Barrer)	CO_2/N_2 selectivity
0	-59	223	56
10	-68	380	51
30	-81	830	48
45	N/A	1406	45
50	N/A	1681	42
60	N/A	1671	46

Increasing PEGDME content increases chain flexibility and gas permeability

Pure-gas at 35°C

Unexpected Improvement by Lowloading MOP-3

PDXLA8; test at 35°C

PDXLA8/PEGDME (50/50)

MOP-3 content (wt.%)	P _{CO2} (Barrer)	$\rm CO_2/N_2$
0	223	56
1	293	56
2	344	59
3	362	57
10	263	55
20	233	57
30	213	25

MOP-3 content (wt.%)	Т (°С)	P _{CO2} (Barrer)	$\rm CO_2/N_2$	CO_2/O_2
0	25	1005	56	22
1	25	662	48	25
3	25	1343	62	24
5	25	703	59	-
3	21	1106	74	31

Meet the project target CO_2 : 1000 Barrer; CO_2/N_2 : 75

Pure- and Mixed-gas Tests

 $H(0^{0})^{0}$

PDXLA8/PEGDME Mixed gas: $CO_2/N_2=15/85$, 100-160 psig

PDXLA8, n = 8 $H_{3}C\left[O \longrightarrow OCH_{3} \atop n\right]$	PEGDME (wt%)	Т (°С)	Mixed-gas CO ₂ (Barrer)	Mixed-gas CO ₂ /N ₂ selectivity
PEGDME	45	35	1200	60
240 g/mol	50	35	1450	62
	50	25	1290	79

Meet the project target CO₂: 1000 Barrer; CO₂/N₂: 75

H₃C

Mixed-Gas Stability Tests

Computational Methodology

Polymer Library:

Name	PE	PTMO	PEO	PDXLA	POM
O:C Ratio	0	0.25	0.50	0.67	1.0

Understanding CO₂-philic rubbery polymers PC-SAFT calculations to calculate solubility selectivity MD simulations to calculate polymer dynamics and diffusivity selectivity.

Solubility Selectivity

 CO_2/N_2 solubility selectivity increases with increasing O content

Solubility × **Diffusivity** = **Permeability**

POM exhibits both high solubility selectivity and diffusivity selectivity

CO_2 Diffusion in POM with Increasing **Oxygen Content**

Acrylate + POM

Acrylate + POM + Methoxy

Acrylate + POM + Ethoxy

Acrylate + POM + Acrylate

Acrylate + Ethoxy + POM + Acetyl

Acrylate + Ethoxy + POM

Six new polymers with different chain endings and oxygen content

Summary of the Chain End Decorated POM Polymers

	CO_2 Diffusion	N_2 Diffusion	O_2 Diffusion	$\rm CO_2$ / $\rm N_2$	CO_2 / O_2
POM	0.47	0.23	0.27	2.04	1.74
1	0.41	1.86	1.09	0.22	0.38
2	0.58	1.17	0.36	0.50	1.61
3	1.26	1.53	1.15	0.82	1.09
4	0.94	0.25	1.47	3.76	0.64
5	1.20	0.34	1.22	3.53	0.98
6	1.42	0.26	1.89	5.46	0.75
Azo	0.54	0.27	0.32	2.00	1.69
Triazine	0.13	0.05	0.06	2.60	2.17
Triazole	0.25	0.12	0.14	2.08	1.79

Polymer 6 performs by far the best for CO_2/N_2 separation

Thin Film Composite (TFC) Membranes

Atom Transfer Radical Polymerization (ATRP)

20

Pure-gas CO_2/N_2 Separation Properties

Sample	Solvent (conc.)	HPDXLA conc. (wt.%)	CO ₂ Permeance (GPU)	$\rm CO_2/N_2$
PDMS	-	-	9000	8
PDA-PDMS	-	-	7000	8.5
HPDXLA1/ PDA-PDMS	IPA/H ₂ O (70/30)	2	521	61
HPDXLA2/ PDA-PDMS	IPA/H ₂ O (90/10)	2	974	49

CO_2/N_2 Separation Properties

Development of Industrial Membranes

- MTR leads TFC membrane scale up activities
- Research-scale (12-inch width) roll-to-roll coating equipment has been used

Moving Forward: Membrane Development

BP2 Tasks	Start date	End date
Task 7. Scale-Up Polymer Synthesis	7/1/21	6/30/23
Task 8 Scale-up Synthesis of MOP-based Nanomaterials	7/1/21	12/31/22
Task 9. Simulate Gas Transport Properties in Polymers Containing Various Functional Groups	7/1/21	6/30/23
Task 10. Scale-up of Optimized Membrane for Roll-to-Roll Production at Bench-Scale	10/1/21	3/31/23
Task 11. Conduct Parametric Laboratory Tests on Membranes	10/1/21	6/30/23

Key Milestones

BP	Milestone Description	Planned Completion
2	High quality polymers produced in 10–20 g/batch	6/30/2023
2	High quality MOPs produced in 10- 20 g/batch	12/31/2022
2	TFC membranes with CO_2 permeance of 3000 GPU and CO_2/N_2 selectivity of 50 and CO_2/O_2 selectivity of 20	6/30/2023
3	Modeling of gas transport in MMMs and guidance to design MMMs	6/30/2024
3	Bench-scale modules with CO_2 permeance of 3000 GPU, CO_2/N_2 selectivity of 50 and CO_2/O_2 selectivity of 20 tested with simulated flue gas	3/31/2024
3	Testing apparatus of bench-scale modules modified and installed at NCCC	12/31/2023
3	Field test of bench-scale modules completed	6/30/2024
3	Techno-Economic Analysis	6/30/2024

Summary

- We developed novel polyethers achieving CO_2 permeability of 1000 Barrer and CO_2/N_2 selectivity of 75
- We synthesized bottlebrush polyethers with high molecular weight
- We demonstrated the feasibility of fabricating TFC membranes
- Future work will focus on the development of high-flux TFC membranes

Acknowledgement

BP3 Tasks	Start date	End date
Task 12. Optimize Polymer and MOP Structures and Synthesis Methods	7/1/21	6/30/22
Task 13. Simulate Gas Transport Properties in MMMs	7/1/21	6/30/22
Task 14. Scale-up of Optimized Membrane for Roll-to-Roll Production at Commercial Scale	7/1/21	9/30/21
Task 15. Fabricate Prototype Modules and Conduct Parametric Lab Testing	10/1/21	3/31/22
Task 16. Modify a Module Testing System for Operation at NCCC	7/1/21	12/31/21
Task 17. Perform Field Test of Bench-Scale Modules at NCCC	1/1/22	6/30/22
Task 18. Membrane System Simulation and Estimate Costs	7/1/21	6/30/22
Task 12. Optimize Polymer and MOP Structures and Synthesis Methods	7/1/21	6/30/22

Milestones i-p: Modeling of gas transport in MMMs and guidance to design MMMs; Bench-scale modules with CO_2 permeance of 3000 GPU, CO_2/N_2 selectivity of 75 and CO_2/O_2 selectivity of 30 at 60°C tested with simulated flue gas; Testing apparatus of bench-scale modules modified and installed at NCCC; Field test of bench-scale modules completed; State Point Data Table; Technology economic Analysis; Environmental Health and Safety Risk Assessment

Project Milestones

DD	DD Milesters Description	Planned
DF	Milestone Description	
1	Updated Project Management Plan	7/30/2019
1	Kickoff Meeting	8/31/2019
1	Updated Technology Maturation Plan	9/30/2019
3	Final report	6/30/2022
1	MMMs with CO_2 permeability of 1000 Barrers and CO_2/N_2 selectivity of 75 and CO_2/O_2 selectivity of 30 at 60°C	6/30/2020
2	High quality polymers produced in 10–20 g/batch	6/30/2021
2	High quality MOPs produced in 10-20 g/batch	6/30/2021
2	TFC membranes with CO_2 permeance of 3000 GPU and CO_2/N_2 selectivity of 75 and CO_2/O_2 selectivity of 30 at 60°C	6/30/2021
3	Modeling of gas transport in MMMs and guidance to design MMMs	6/30/2022
3	Bench-scale modules with CO_2 permeance of 3000 GPU, CO_2/N_2 selectivity of 75 and CO_2/O_2 selectivity of 30 at 60°C tested with simulated flue gas	3/31/2022
3	Testing apparatus of bench-scale modules modified and installed at NCCC	12/31/2021
3	Field test of bench-scale modules completed	6/30/2022
3	State Point Data Table	6/30/2022
3	Techno-Economic Analysis	6/30/2022
3	Technology Gap Analysis	6/30/2022
3	Environmental Health and Safety Risk Assessment	6/30/2022