EFFICIENT REGENERATION MODULE FOR CARBON CAPTURE SYSTEMS IN NGCC

DOE Contract: FE0032135

APPLICATIONS

Indira Jayaweera

Director, Carbon and and Water Management

SRI International

2022 Carbon Management Research Project Review Meeting August 15-19, Pittsburgh

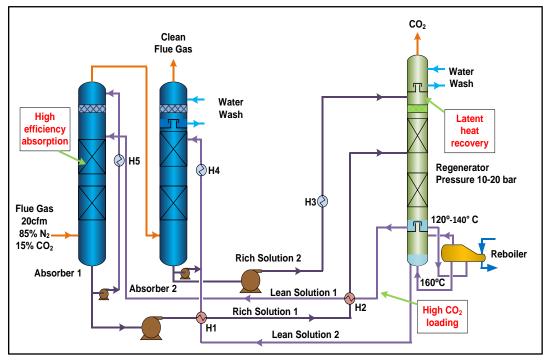
Mixed-Salt Process (MSP)

Process Summary

- Uses inexpensive, industrially available material (potassium and ammonium salts)
- No solvent degradation
- Has the potential for easy permitting in many localities
- Uses known process engineering
- Accelerated development possible

Demonstrated Benefits (by testing and modeling)

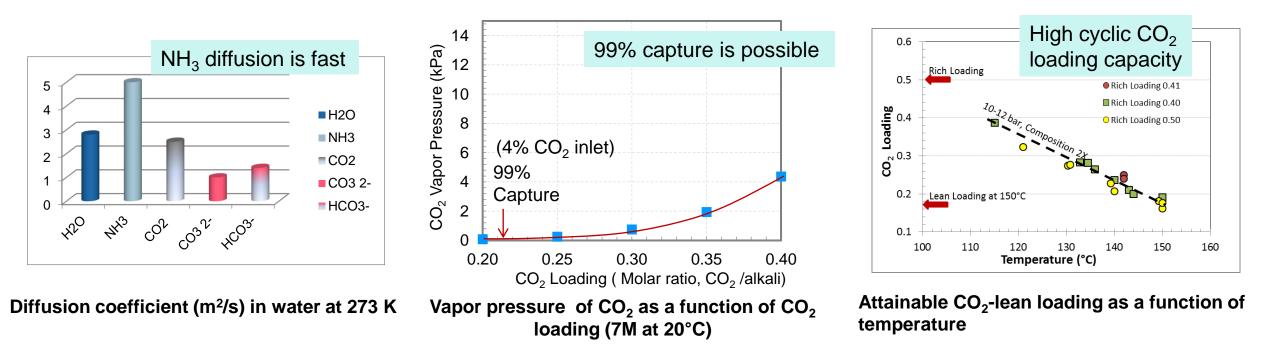
- Enhanced CO₂ capture efficiency
- High CO₂-loading capacity
- High-pressure release of CO₂ (10-12 bar)
- Reduced energy consumption (~ 2.3 MJ/kg-CO₂ for coal based applications)


Expected Additional Benefits

- Flexible CO₂ capture possible
- > 95% capture possible
- Removes common acid pollutants and particulates

K₂CO₃–NH₃–CO₂–H₂O system

$CO_2(g) \leftarrow \rightarrow CO_2(aq)$


- $NH_3(aq) + CO_2(aq) + H_2O(liq) \leftarrow \rightarrow (NH_4)HCO_3(aq)$
- $(NH_4)_2CO_3 + CO_2(aq) + H_2O (liq) \leftrightarrow 2(NH_4)HCO_3(aq)$
- $2NH_3(aq) + CO_2(aq) \leftrightarrow (NH_4)NH_2CO_2$
- $(\mathrm{NH}_4)\mathrm{NH}_2\mathrm{CO}_2(\mathrm{aq}) + \mathrm{CO}_2(\mathrm{aq}) + 2 \mathrm{H}_2\mathrm{O}(\mathrm{liq}) \bigstar 2(\mathrm{NH}_4)\mathrm{HCO}_3(\mathrm{aq})$
- $K_2CO_3(aq) + CO_2(aq) + H_2O(liq) + Catalyst \leftarrow \rightarrow 2KHCO_3(aq) + Catalyst$

Simplified Process Flow Diagram

SRI International[®]

Selected Solvent Properties

Project Objective

+ The project objective is to design, fabricate, and test a highly efficient regeneration module capable of providing a deep-lean absorption solution required for capturing CO₂ from dilute sources such as natural gas (NG) power plants at 95% or better efficiency. Integrating this advanced regenerator module with the absorption modules of the Mixed Salt Process (MSP).

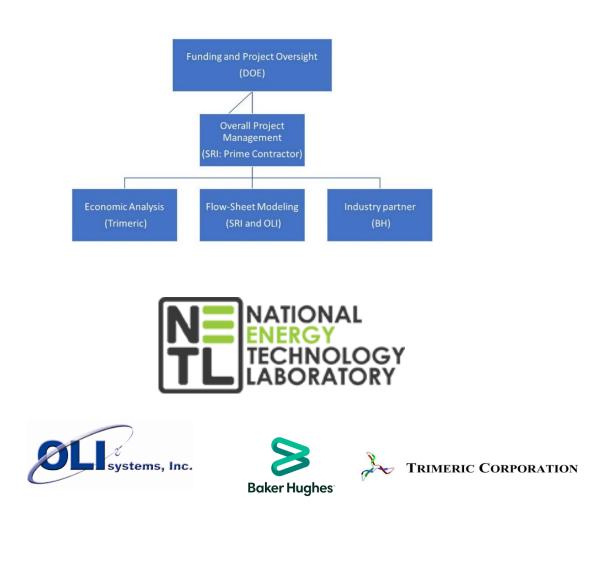
 + We plan to demonstrate significant progress toward a 20% reduction in cost of capture compared to the DOE reference Natural Gas Combined Cycle (NGCC) plant with carbon capture.

Project Scope

The project scope includes:

- + design and modeling of the advanced flash stripper;
- + modeling stripper integration to the MSP system;
- + fabrication of the stripper and auxiliaries;
- + installation and integration of the stripper to the SRI bench-scale system;
- testing of the advanced stripper at SRI site using a simulated flue gas stream equivalent to about 10 kWe;
- studying the strategies for producing very highly alkaline lean solvent with minimized emissions;
- + collecting critically important data for a detailed techno-economic analysis (TEA); and
- + updating the State Point Data Table and Technology Maturation Plan (TMP).

Project Funding and Budget Period


	Budget Period: 1/14/2022 – 1/13/2024		
	Government Share	Cost-Share	
Project Total	\$1,499,759	\$375,000*	
Funding Source Percentage	80%	20%	
* Cost-share provided by Baker Hughes			

Project Team

Project Manager: Krista Hill, Zachary Roberts (former), NETL Prime Contractor: SRI International Project Team: US and International Partners

Work Organization

- + SRI International
 - Technology developer
- + Baker Hughes
 - Industrial cost-share partner
- + OLI Systems
 - Process modeling
- + Trimeric Corporation
 - Techno-economic analysis

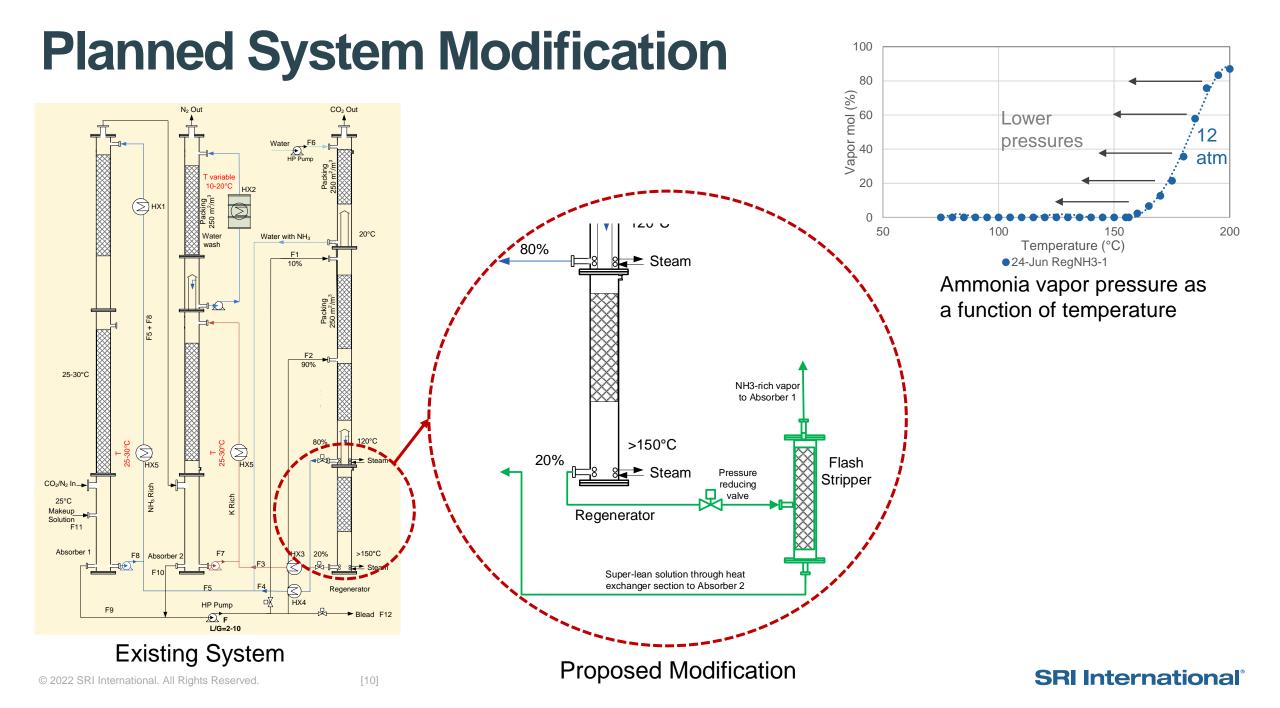
Project Timeline

Task Name	Start	Finish	Half 1, 2022 Half 2, 2022 Half 1, 2023 Half 2, 2023 Ha J M M J S N J M M J S N J
Highly Efficient Regeneration Module for Carbon Capture Systems in NGCC Applications	Fri 1/14/22	Mon 1/15/24	
TASK 1.0 - Project Management (BP1)	Fri 1/14/22	Fri 1/12/24	
Subtask 1.1 Project Mangement Plan	Fri 1/14/22	Fri 1/12/24	
Subtask 1.2 Technology Maturation Plan	Fri 1/14/22	Fri 1/12/24	
Task 2.0 - Advanced Stripper Design and Modeling	Mon 3/14/22	Thu 9/29/22	l'anna anna anna anna anna anna anna ann
Subtask 2.1 - Advanced Stripper Design	Mon 3/14/22	Tue 6/14/22	
Subtask 2.2 – Advanced Stripper Modeling	Mon 4/18/22	Thu 9/29/22	
Subtask 2.3 – Integrated System Modeling	Wed 6/1/22	Thu 9/29/22	
Task 3.0 – Process HAZOP Evaluation	Fri 7/1/22	Thu 9/1/22	
Task 4.0 – Stripper Fabrication, Installation and Shakedown	Mon 10/3/22	Fri 6/2/23	
Subtask 4.1 – Stripper Fabrication and Installation	Mon 10/3/22	Wed 5/3/23	
Subtask 4.2 – Test Plan Development	Wed 3/1/23	Mon 5/1/23	
Subtask 4.3 – Stripper Shake-Down Testing	Mon 4/3/23	Wed 5/31/23	
Task 5.0 – Stripper Operation & Data Collection	Thu 6/1/23	Fri 12/1/23	
Subtask 5.1 –Initial Steady-State and Dynamic Test	i Thu 6/1/23	Thu 8/31/23	
Subtask 5.2 – Parametric Testing	Mon 7/3/23	Thu 11/2/23	
Subtask 5.3 – Steam Use Measurements	Tue 8/1/23	Thu 11/30/23	
Task 6.0 – Final System Modeling and Techno-Economic Analysis (TEA)	Thu 6/1/23	Fri 12/1/23	
Subtask 6.1 – Modeling and Test Data Comparison	Thu 6/1/23	Fri 11/3/23	
Subtask 6.2 – Optimized CC Unit Integration with the Power Pant and TEA	Mon 7/3/23	Mon 11/27/23	
Subtask 6.3 – Technology Maturation Plan (TMP)	Mon 7/3/23	Fri 12/1/23	
Final Report	Fri 1/12/24	Fri 1/12/24	

Project kick-off meeting was on 4/1/2022. We are currently on target to complete the Task 2 milestones on time.

SRI International[®]

Large Bench-Scale System at SRI



Analytical and Control Systems

Absorbers

Regenerator

- This system was commissioned in May 2014 (DE-FE0012959)
- Currently being used in A-MSP project (FE0031597) and will be modified for the current project

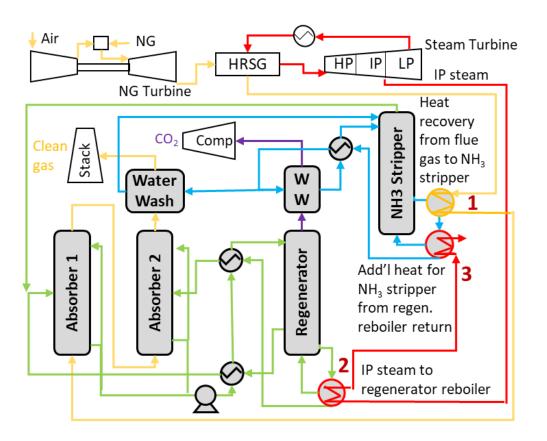
Project Work Update

- + Task 1: Project Management and Planning
 - Subcontract and vendor agreements completed
 - Kickoff meeting was on April 2, 2022
 - PMP prepared
 - Preliminary TMP submitted
 - Preliminary EH&S report prepared
- + Task 2: Advanced Stripper Design and Modeling
 - Advanced stripper design is being finalized
 - Currently modeling the integrated system

Prelimi

Project Work Update (Continued)

1. Component modeling to support the design of the advanced stripper to generate an ultra-lean absorption solvent (<0.2 CO_2 loading).


2. Modeling of the advanced stripper integration with the existing large bench CO_2 capture system at SRI

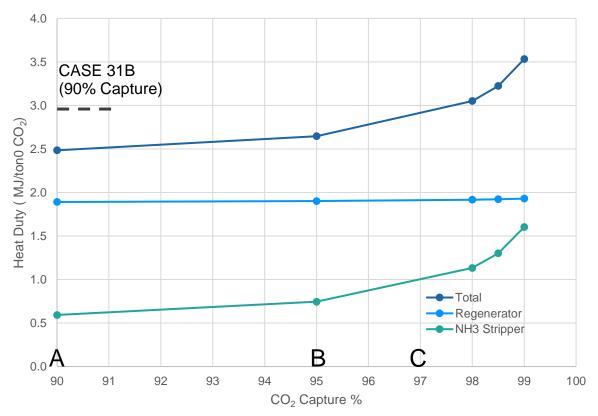
3. Preliminary modeling of the CO_2 capture system integration to the reference NGCC power plant to produce heat and mass balance data

- Mixed-Salt Process simulation with coal flue gas scaled down to SRI bench scale
- First conversion of SRI bench-scale simulation from coal to natural gas flue gas
- Reduction in solvent flow rate to reflect lower CO₂ content of natural gas flue gas
- Optimization of heat exchanger sizing to reduce reboiler duty
- Increased the molarity in lean solution (6 to 8 M)
- Reduction in solvent flow rate to reflect higher molality of lean solution
- Addition of single-stage flash stripper to absorber 2 lean stream

Key parameters varied include - solvent recycle rate, alkaline concentration (6 to 8M), and flash stripper operating temperature and pressure

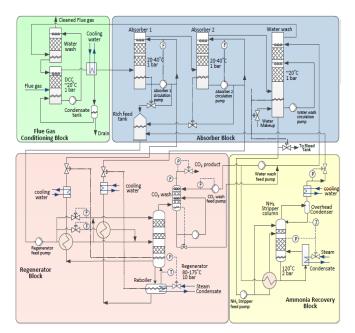
Preliminary Modeling: Integration of the CC System with Power Plant




Performance Factors	Cansolv Baseline (Case B31B)	SRI MSP (90%)	SRI MSP (95%)
CO ₂ capture, %	90	90.1	95
CO₂ purity, %	98.65	99.4	99.1
CO ₂ pressure, atm	2	12	12
CO ₂ compression power, MWe	17	10.7	TBD
Reboiler duty, MJ/Kg CO ₂	2.9	2.5	~3.0
Steam temperature (°C) and pressure (MPa, abs) for reboiler	308°C; 0.51 MPa	308°C; 0.51 MPa	308°C; 0.51 MPa
Steam flow rate for reboiler, kg/h	259,2	183,3	TBD
Steam temperature (°C) and pressure (MPa, abs) for reclaimer	356°C and 4.28 MPa, abs (HP turbine)	No reclaimer necessary	No reclaimer necessary

Modeling will follow the DOE guidelines provided in- Performing a Techno-Economic Analysis for Power Generation Plants, National Energy Technology Laboratory, DOE/NETL-2015/1726, July 2015. https://netl.doe.gov/energy-analysis/details?id=711

SRI International


Sensitivity Analysis:CO₂ Capture from NGCC

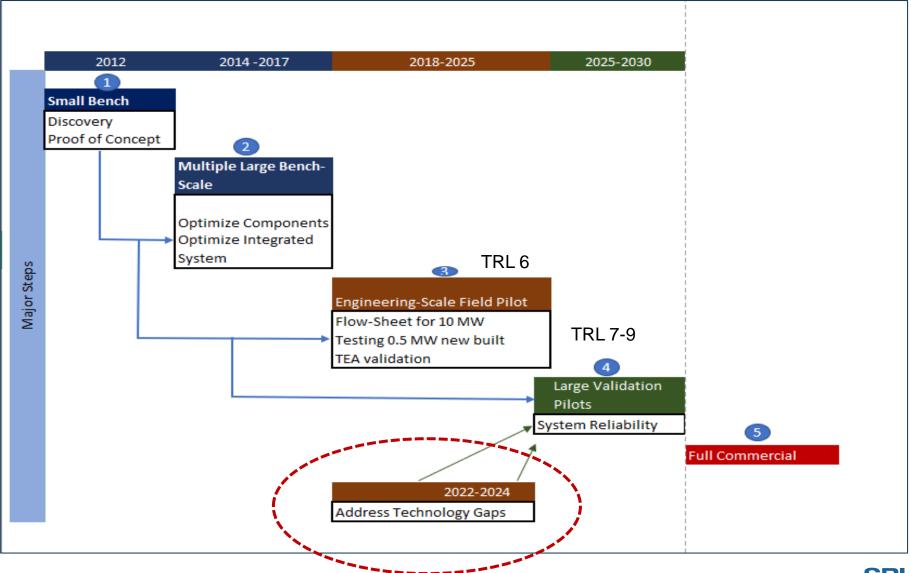
Heat duty for MSP with 90-99% CO_2 capture, based on simulations from OLI Systems.

- A. Previous goal for CO₂ capture from PCC (90% Capture)
- B. Current project goal for CO₂ capture from NGCC for the current project (>95% Capture)
- C. Future goal for CO₂ capture from NGCC (>97% Capture)

Block flow diagram

SRI International°

Project Milestones


We are on schedule to complete the project milestones

BP	Task/ Subtask No.	Milestone Description	Planned Completion
1	1	a. Updated PMP	Completed
		b. Completions of subawards	Completed
1	1	c. Kickoff Meeting	Completed
1	1	d. Preliminary Technology Maturation Plan	Completed
1	2.1-2.3	e. Completion of the advanced stripper design and modeling	9/29/22
1	4.1	f. Advanced stripper fabrication and integration to the large bench system	5/1/23
1	4.3	g. Completion of the advanced stripper shake-down testing	5/31/23
1	5.1 and 5.2	h. Completion of parametric testing; at least 40 runs	11/2//23
	5.3	i. Completion of steam use measurements	11/30/23
1	6.1	j. Completion of modeling of the full flow-sheet and comparison with test data	12/1/23
1	6.2	k. Techno-Economic Analysis (TEA) topical report submitted	12/1/23
1	6	I. Updated State-Point Data Table submitted	12/1/23
1	6.3	m. Technology Maturation Plan topical report submitted	12/1/23
1	1	Draft Final Report submitted	12/1/23

Project Risk Registry

Description of Risk Technical Risks:	Probability (Low, Moderate, High)	Impact (Low, Moderate,	High) Risk Management High) Mitigation and Response Strategies
Precipitation of solids in the absorber during preparing rich solutions for stripper testing	Low	High	Store rich solution in a separate tank overnight; design a standard operating procedure (SOP) to avoid shutdowns with rich solutions.
Residual ammonia in the exit gas stream	Moderate	Moderate	Increase water-wash column freshwater flow to capture ammonia vapor. The mini-pilot system at SRI has already demonstrated this capability.
Condensation of solids in regenerator gas exit lines during long-term operation	Moderate	Low	Ensure proper heat tracing of susceptible lines and control valves. Plan periodic inspections of suspect places and maintain the temperature above the condensation point. SRI has already modeled this in FE0031588.
Resource Risks: Delays in procurement of required components for assembling the new stripper	Low	Moderate	Plan ahead with vendors. Place orders early and have backup vendors.
Management, Planning, and Oversight Risks:			
Project team availability	Low	Moderate	Identify backup team members
Financial Risks:			
Cost overruns	Moderate	High	Work closely with the project team to execute the MSP modular system fabrication and installation. Assign a dedicated project administrator (PA closely monitor expenditures, and report any variations to the DOE PM immediately. Complete exhaustive planning to avoid cost overruns and strictly adhere to the project scope.
EH&S Risks:			
Personal health and safety	Low	High	Prepare SOPs, train operators, and review safety procedures regularly, including use of personal protective equipment (PPE) when working directly with ammoniated solvent.
Accidental release/ spillage of solvent	Low	High	Pressurized equipment will be certified and stamped. All components of the modular system will be tested for functionality and leak tightness with water before introducing solvent to the system.
Residual ammonia in the exit gas stream	Moderate	Moderate	Increase water-wash column freshwater flow to capture ammonia vapor. The mini-pilot system at SRI has already demonstrated this capability.
External Factor Risks:			
Pandemic-related issues	Moderate	High	Create a flexible schedule

Overall MSP Maturation Plan

© 2022 SRI International. All Rights Reserved.

[17]

SRI International[®]

Disclaimer

This presentation includes an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Acknowledgements

NETL (DOE)

• Krista Hill, Zachary Roberts , Andrew Jones, Jose Figueroa, Dan Hancu, Lynn Brickett, and other NETL staff members

SRI Team

• Indira Jayaweera, Palitha Jayaweera, Elisabeth Perea, John Chau, Milad Yavari, William Olsen, Qingzhong Yuan, Chris Lantman, Lisa Wottrich, and John Van Scoter

Other Collaborators and Contributors (Recent Past and Present) for MSP Development

- Trimeric Corporation
- UIUC
- OLI Systems
- POLIMI
- Stanford University
- Aqueous Application Systems
- Baker Hughes
- IHI Corporation

SRI International

SRI International[®]

Thankyou