

Transformational Sorbent-Based Process for a Substantial Reduction in the Cost of CO₂ Capture (DE-FE0031722)

Drs. Ravi Jain & Norberto Lemcoff InnoSepra, LLC 452 Lincoln Blvd Middlesex, NJ 08846 ravi.jain@innosepra.com, 908-672-7395

www.innosepra.com

U.S. Department of Energy National Energy Technology Laboratory Carbon Management Project Review Meeting August 15 - 19, 2022

Executive Summary

- CO₂ Capture with physical sorbents with low heats of sorption (~0.8 GJ/MT)
 - -High purity CO_2 (>98%) at high recovery (>90-95%),
 - Up to 99% recovery possible with some process modifications
 - —The absolute energy requirement (excluding compression) of 1.6-1.8 GJ/MT of CO₂, needed at about 110°C
 - Absolute energy requirement is 40% lower than Shell Cansolv and 57% lower than MEA
 - The relative energy requirement, based on lost work analysis, is 66% lower than Shell Cansolv and 73% lower than MEA assuming160°C steam extraction temperature for amines
 - Significantly lower capital (>45% reduction), and parasitic power (>45% reduction) leading to >45% lower capture cost —<\$30/MT capture cost for pipeline quality CO₂
 - Lab scale testing, process simulation, and a preliminary TEA during BP1; bench scale testing at TCM and a final TEA during BP2

The DOE Project (FE0031722)

- Objectives: >90% CO₂ recovery, >95% purity with a potential pathway for <\$30/MT capture cost by 2030
- The total project budget is U.S. \$4 million (\$3.13 MM DOE, \$0.87 MM match including significant match from TCM)
- In the first budget period (May 2019 to March 2021) we
 - Optimized the sorbent and the regeneration process through lab testing, Monte Carlo simulations, and process simulation
 - Did a detailed design and costing of the bench unit, a preliminary TEA, and a HAZOP addressing TCM integration issues
- In the second budget period (April 2021 to Dec 2022) we are
 - Constructing a field test unit (500 Nm³/hr scale)
 - Will carry out testing at TCM, a detailed engineering design, and a Rev 4 techno-economic evaluation for a commercial scale unit (550 MW power plant)

Project Participants

DOE/NETL

 Project oversight, feedback, funding (Project Manager: Mariah Richardson)

InnoSepra

 Technology development at lab and bench scale, coordinate with partners, project management and reporting

Main Line Engineering

 Engineering design of the full scale plant, TEA, cost share TCM

• Field testing, commercial feedback and cost share

Adroitech

Monte Carlo Simulation, fabrication of structured sorbents

Adsorptech / Fabrication Partners

• Bench unit design and fabrication, cost share

Technology Background

- Flue gas pretreatment for NO₂ and SO_x removal to sub-ppm levels, removal of substantial amounts of aerosols, and moisture removal to ppm levels
 - NO₂, SO_X and aerosol removal demonstrated at pilot scale; applicable to solvent capture
- Physical sorbents with a very high surface area (>10 million m²/m³), low heats of adsorption (0.8 GJ/MT of CO₂)
 - Adsorption at 25-40°C, regeneration at 90-110°C, high net CO₂ capacity (>8-wt%)
 - Pipeline quality CO₂ (>98% purity, <1 ppm H_2O and SO_X, <10-ppm O_2), >90% recovery
- Key innovation is *the novel combination* of process, sorbent regeneration and materials leading to >45% reduction in parasitic power
 - Performance similar to or better than amines, much lower regeneration energy requirement

Field Demonstration of First Generation CO₂ Capture Process

- NRG's Indian River, DE coal fired power plant, more than 8 weeks of testing
- 80-100 scfm flue gas, 22-32^oC feed, 50-ppm SO₂, 10-12% CO₂
- 8-10.5 wt% net CO₂ capacity in the field
- >94% CO₂ recovery, 98.5- 99.5% CO₂ purities, pipeline / EOR quality gas (<10 ppm oxygen and moisture)
- Flue gas purification demonstrated at the Abbott power plant (800 scfm)

Second Generation InnoSepra Process

- A breakthrough regeneration method has allowed reduction in the absolute energy requirement to 1.6-1.8 GJ/MT (based on lab testing and process simulation) at about 110°C
 - The process is also simpler, significant capital savings over the first generation process
- Effective parasitic load of 0.96 GJ/MT based on a steam extraction temperature of 160°C (74 psia) for MEA and Cansolv
 - About 67% lower than Cansolv, and about 73% lower than MEA
 - Less than 16% of plant's output for CO₂ capture and compression
- The technology is to be demonstrated at the bench scale at TCM (Technology Centre Mongstad) in 2022

Technical Approach

Experimental Design and Work Plan

- The Work Plan for BP1 involved
 - Identification of suitable materials based on lab testing and Monte Carlo simulations
 - Testing the materials in a lab scale unit for purity and recovery
 - Process simulation to estimate the energy requirements and equipment sizing
 - A techno-economic analysis to estimate the capital cost and the CO₂ capture cost

The Work Plan for BP2 involves

- Bench unit fabrication, HAZOP, shipping and installation
- Testing at TCM with simulated SCPC flue gas as a function of flow rate, feed temperature, and regeneration temperature
- Process simulation to update the energy requirements and equipment sizing
- A final techno-economic analysis to estimate the capital cost and the CO₂ capture cost

Technical Approach

Key Milestones

- Identification of suitable materials with at least 6-wt% capacity for >95% purity
- Process model completion and initial techno-economic analysis
- Detailed bench unit design, costing and HAZOP
- Bench unit fabrication, shipping & installation, and testing
- Detailed engineering design for a 550 MW SCPC plant
- Final TEA with Rev 4 guidelines to determine potential capture cost

Project Success Plan

- Thermal requirements below 1.8 GJ/MT and a capture cost below \$40/MT based on lab testing & simulation
- Thermal requirements below 1.8 GJ/MT and a capture cost below \$40/MT based on field testing & detailed engineering design

Project Risks and Mitigation Strategies

 The key risks include resource availability, and sorbent regeneration. Back up resources and regeneration approaches have been identified.

Key Activities for BP1

- Monte Carlo simulations to identify the suitable sorbents
 - Sorbent structure variation can provide absolute CO₂ capacities (15% CO₂ at 25°C) between 18-wt% (CO₂-N₂ separation factors of 15-20), and 12-wt% (CO₂-N₂ separation factor over 200)
 - Confirmed through microbalance and breakthrough testing
- The regeneration process was optimized through cyclic testing
 - No loss in performance after multiple cycles, >8-wt% net CO₂ capacity
- Process simulation, integration with the host site, preliminary TEA
 - A detailed process simulation confirmed a power penalty of <16% of plant's output
 - A new CO_2 compression cycle for up to 20% reduction in energy needed for CO_2 compression
 - A detailed HAZOP and test site integration with TCM
 - A preliminary TEA indicating the potential for a capture cost of about \$30/MT

Identification of Suitable Materials

- A number of materials were identified based on Monte Carlo simulations and tested in the adsorption microbalance for CO₂ and N₂ capacities, and CO₂-N₂ separation
- A typical CO₂ isotherm (30°C, Micromeritics ASAP 2020) is shown below

- Depending on the material structure CO₂ capacities between 12-wt% and 18-wt%, separation factors between 15 and 650 can be obtained
 - High separation factors are associated with low CO₂ capacities

Process Simulation Summary (Retrofit)

- Simulation of the CO₂ capture plant integrated with the coal-fired power plant with Aveva's Pro^{II} software
- The feed and product conditions (for a 550 MW SCPC plant) are:
 - Flue gas: 74,092 kmol/hr, 57°C, 100 kPa, 68.1% N₂, 13.5% CO₂, 15.2% water
 - Product CO₂: 9,517 kmol/hr, 99% CO₂, 15,270 kPa
- Energy required for CO₂ capture and compression
 - Pumps, blowers and compressors: 54.8 MW
 - Lost electrical output in LP turbine: 24.2 MW
 - Total loss in electrical output: 79 MW
 - Electrical output loss as a percent of total output: 14.4%
- Very significant operational flexibility
 - Five capture modules for a 10,000 MTD plant
 - Continuous operation between 10 and 100% of design is possible

Techno-Economic Evaluation Summary (Retrofit) 550 MW SCPC Power Plant, 2.86 MM MT/year of CO₂ Captured*

	Shell Cansolv	1 st Generation InnoSepra Process	2 nd Generation InnoSepra Process
Indicative TOC, U.S.\$MM	891	561	482
Power Loss Due to Steam Extraction, MW	70	32	24
Electrical Power (compression, auxiliaries), MW	67	67	55
Total Power Loss, MW	137	99	79
Power Loss as % of Base Output	25	18	14.4
CO ₂ Capture Cost at the plant gate, \$/tonne	62	41	34
CO ₂ Capture Cost including TS&M, \$/tonne	67	46	39

- 10% capital recovery factor + 2.5% maintenance charge (7% CRF in 2019 Baseline Report), \$64/MWh replacement power, 85% on stream factor
- A capture cost of \$29/MT for the 2nd generation InnoSepra Process with a CRF of 7%
- Higher capture rate, ~95%, for the InnoSepra Process not accounted for in the calcs

Key Activities for BP2

- Skid design and testing, field test report and updated TEA
- Most of the effort focused on bench unit fabrication including lab tests in support of skid design
 - Capable of processing 500 nm³/hr of flue gas
 - Being designed as three separate skids
 - Skid 1 for feed preparation and drying
 - Skid 2 for CO₂ adsorption and regeneration
 - Skid 3 for regeneration
 - Each skid is about 8' w x 10' H and 25' L, about 12,000 lbs each
 - Very significant challenges due to fabrication resources, engineering resources, supply chain constraints leading to project delays
- Bench Unit Status
 - All the major components procured and sent to the fabricators
 - Skid 1 nearing completion
 - Work started on Skid 2 piping and vessels
 - Detailed design for Skid 3 completed

Process Flow Diagram for the Bench Unit

Layout of InnoSepra Skid #1

Purification and drying section

Layout of InnoSepra Skid #2

Adsorption section

Layout of InnoSepra Skid #3

Plan for Future Testing / Commercializations

 Need one intermediate scale up after TCM testing to build commercial scale CO₂ capture plants

Steps toward technology commercialization

- FEED study for a 550-650 MW SCPC plant after the completion and analysis of field test results
- Further process demonstration at ~100 tonnes per day scale
 - 25X scale up over the TCM pilot
- Once the process has been demonstrated at 100 tonnes per day scale
 - 1,000-2,500 tonnes per day CO₂ capture plants can be built with high degree of confidence

InnoSepra – TCM interface and utilities

Image of TCM test bay for emerging technologies

- catching our future

The flue gas - RFCC

Component	unit	Value
CO ₂	mol%	13-14.5
SO _x	ppmv	5
NO _x	ppmv	100
Particles	mg/Sm ³	<0.5

InnoSepra - Solid Sorbent CO₂ Capture

3D model of temporary linear design at TCM

- 1. Filtered RFCC flue gas enters the InnoSepra unit
- 2. Pre-treatment
 - NO2 & SO_x removal
- 3. Capture
 - Drying and capture
- 4. Depleted flue gas and CO₂ product is combined and transported to stack

Summary

- The InnoSepra CO₂ capture technology, based on physical sorbents, has the potential for a significant reduction in the CO₂ capture cost for the power plant and industrial flue gases.
- During BP1 (based on lab testing & process simulation), InnoSepra demonstrated the potential of the technology to obtain 90-95% recovery and >98% purity CO₂ with >45% lower capture cost compared to solvent-based processes.
- During BP2, InnoSepra will demonstrate the technology at the Technology Centre Mongstad and use the test data along with process simulation and a TEA to evaluate the technology's potential for the reduction in parasitic power and capture cost.
- If the lab results are validated during field testing the InnoSepra technology would represent a viable pathway for decarbonizing power and industrial sectors with a significantly lower green premium compared to solvent-based technologies.

Project Organization Chart

ID	Task Name	Duration	Start	Finish	2019 Otr 2 Otr 3	Otr 4 Otr 1	2020 Otr 2 Ot	r 3 Otr 4 Ot	·r 1 0
1	Breakthrough CO2 Capture Technology	960 days	Wed 5/1/19	Sat 12/31/22					
2	Project Management	960 days	Wed 5/1/19	Sat 12/31/22					
3	Project Management & Planning	960 days	Wed 5/1/19	Sat 12/31/22	C				
4	Milestone 1: Complete Update of Project Management Plan	1 day	Tue 10/15/19	Tue 10/15/19		I			
5	Milestone 2: Project Kickoff Meeting	1 day	Tue 9/10/19	Tue 9/10/19	I				
6	BP 1: Materials Selection, Lab Testing, Initial TEA, Bench Unit Design	502 days	Wed 5/1/19	Wed 3/31/21	•				
7	Develop Technology Maturation Plan	175 days	Wed 5/1/19	Tue 12/31/19	C.				
8	Milestone 3: Submit Technology Maturation I	P1 day	Tue 12/31/19	Tue 12/31/19		Ι			
9	Identification of Suitable Materials for Lab Te	s 198 days	Wed 5/1/19	Fri 1/31/20]			
10	Milestone 4: Suitable materials with >6-wt% capacity	1 day	Thu 1/30/20	Thu 1/30/20		I			
11	Construction of Lab Test Unit	197 days	Mon 7/1/19	Tue 3/31/20	C				
12	Milestone 5: Finish construction of lab unit	1 day	Tue 3/31/20	Tue 3/31/20			I		
13	Breakthrough & Cyclic Testing	196 days	Tue 10/1/19	Tue 6/30/20		C			
14	Milestone 6: Sorbent downselection based on lab testing	1 day	Tue 6/30/20	Tue 6/30/20			I		
15	Process Simulation	239 days	Fri 11/1/19	Wed 9/30/20					
16	Milestone 7: Process model completion	1 day	Wed 9/30/20	Wed 9/30/20				I	
17	Initial Techno-Economic Analysis	154 days	Mon 6/1/20	Thu 12/31/20					
18	Milestone 8: Complete and present initial TEA	A 1 day	Sun 1/31/21	Sun 1/31/21				I	
19	Lab Testing for Process Intensification	121 days	Tue 9/15/20	Sun 2/28/21				C	
20	Milestone 9: Structured Sorbent Testing	1 day	Sun 2/28/21	Sun 2/28/21					I
21	Bench Scale Unit Process Design and Fabrication Costing	154 days	Mon 6/1/20	Thu 12/31/20			C		
22	Milestone 10: Preliminary bench unit costing to determine size	1 day	Thu 12/31/20	Thu 12/31/20				I	
23	Milestone 11: Detailed bench unit design including HAZOP	1 day	Sun 1/31/21	Sun 1/31/21				I	
24	Milestone 12: TCM test site agreement	1 day	Wed 3/31/21	Wed 3/31/21					Ι
25									
26	BP 2: Bench Unit Fabrication & Testing	457 days	Thu 4/1/21	Sat 12/31/22					-
27	Bench Unit Fabrication, Shipping & Installatio	r 413 days	Thu 4/1/21	Mon 10/31/22					
28	Milestone 13: Bench unit procurement sched	ι1 day	Mon 11/1/21	Mon 11/1/21					
29	Milestone 14: Bench unit fabrication complet	€1 day	Thu 4/21/22	Thu 4/21/22					
30 📅	Bench Unit Testing	90 days	Tue 6/28/22	Mon 10/31/22					
31	Milestone 15: Bench unit installation at TCM	1 day	Thu 8/4/22	Thu 8/4/22					
32	Milestone 16: Bench Unit Test Report	1 day	Mon 10/24/22	Mon 10/24/22					
33	Milestone 17: Bench Unit decommissioning	1 day	Mon 10/31/22	Mon 10/31/22					
34	Engg Design and TEA of the Full Scale Plant	87 days	Fri 7/1/22	Sun 10/30/22					
	Task		Project Summa	ry 🛡	Inactive N	Ailestone 🔷	N	lanual Summary Rollup	0
Project: Rel	ease 9.0 Split		External Tasks		Inactive S	ummary 🗸 🤝		lanual Summary	
Date: Fri 2/	11/22 Milestone ♦		External Milest	one 🔶	Manual T	ask 🗖	St	tart-only	C
	Summary		Inactive Task		Duration-	only	Fi	nish-only	J
					Pa	age 1			

ID		Task Name	Duration	Start	Finish	20	019			20	20			
	0					Qtr 2	Qtr 3	Qtr 4	Qtr 1	Qtr 2	Qtr 3	Qtr 4	Qtr 1	Qt
35		Milestone 18: Detailed engineering of full scale plant	1 day	Mon 10/31/22	Mon 10/31/22									
36		Milestone 19: Complete final TEA	1 day	Wed 11/30/22	Wed 11/30/22									
37		State Point Data Table	65 days	Thu 9/1/22	Wed 11/30/22									
38		Milestone 20: Complete state data point table	e1 day	Wed 11/30/22	Wed 11/30/22									
39		Technology Gap Analysis	65 days	Thu 9/1/22	Wed 11/30/22									
40		Milestone 21: Report on Technology Gap Ana	l 1 day	Wed 11/30/22	Wed 11/30/22									
41		EH&S Risk Assessment	65 days	Thu 9/1/22	Wed 11/30/22									
42		Milestone 22: Complete EH&S risk assessmen	11 day	Wed 11/30/22	Wed 11/30/22									
43		Final Project Report	111 days	Mon 8/1/22	Sat 12/31/22									
44		Milestone 23: Present Closeout Report Incl. Final TEA	1 day	Sat 12/31/22	Sat 12/31/22									

	Task		Project Summary	•	Inactive Milestone	\$	Manual Summary Rollup	
Project: Release 9.0	Split		External Tasks		Inactive Summary		Manual Summary	
Date: Fri 2/11/22	Milestone	•	External Milestone	•	Manual Task	[]	Start-only	C
	Summary	▼▼	Inactive Task		Duration-only		Finish-only	כ
					Page 2			

Deadline +
Progress