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Project Objective and Team

• Objective is to develop a transformational sorbent 

based on a metal-organic framework (MOF) 

• 90+% capture efficiency of CO2

• 95% purity recovered CO2 purity 

• 30% lower costs than amine based systems with 

<$30 per tonne of CO2

• Main Project Tasks 

BP1 - Demonstrate sorbent 

performance at the bench scale

- Assess impact of flue gas 

contaminants (SO2, NOx)

- Develop cycle sequence

- Preliminary TEA

BP2 - Scale-up sorbent production

- Complete Life/Durability Tests

- Optimize adsorption cycles and 

update TEA

BP3 - Slipstream field tests (6 months)

- High Fidelity TEA and EH&S
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Overall Project Duration

• Start Date = June 1, 2019

• End Date = May 31, 2024

Budget

• Project Cost = $3,750,000

• DOE Share = $3,000,000

• TDA and its partners = $750,000



Process Schematic

• Sorbent operates between 30-50oC under vacuum (0.2-0.3 atm) 

• Commercially available vacuum equipment

• Capability to achieve 99% CO2 removal efficiency

• High CO2 selectivity results greater than 95% CO2 product purity

• A new reactor design to ensure low pressure drop and reduced parasitic 
load

• Similar technology can also be applied to NGCC applications, with higher 
steam purge/energy penalty
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CO2/N2 Adsorption Isotherms
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T = 30°C

• High CO2 uptake

• >2 mmol/g at 0.15 bar

• ~3 mmol/g for the modified version

• Very high selectivity towards CO2 over 

N2, which ensures a very high product 

purity 

• Over 95% without any downstream 

purification needs 

• Heat of adsorption of CO2 is measured 

as 11 kcal/mol at low surface coverage 

and 8 kcal/mol at higher coverages

• Improvements in linker synthesis 

results in very high CO2 uptake



Water Adsorption Isotherms

• Low pressure water isotherms are linear indicating that water easily 

desorbs from the sorbent surface

• No change in low pressure isotherm before and after water isotherm 

measurements
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Pelletization of the MOF Sorbent
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T= 30°C powder

3 mm pellets

~17% inert binders were 

used to make pellets

• MOFs are difficult to pelletize or granulate

• Conventional powder compaction techniques 

could potentially damage the MOF structure

• TDA developed a pill-pressing method that 

results in pelletized sorbent to retain >95% of 

their capacity when normalized based on 

active MOF weight



Scale-up of MOF Production 

• Scale-up from 1L to 22L flask and to 180L Hastelloy reactor in BP2

• BP1 evaluations have focused on improving synthesis parameters and 

space-time yields while conserving raw materials (via recycle)

• Space yield improvements of 10-15X

• Time yield improvements of 5-8X

• MOF synthesis, Filtration/Rinsing, Drying/Devolatilization are all 

sequentially carried out in the same reactor

• A classified area is designed and built to handle the equipment and solvents 

required for MOF processing
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Optimization of Space Time Yield

• Space Yield was increased from <10 g/L to 75-80 g/L 

• Synthesis time was reduced from 7 days to 1 day (24 h)

• We were able to increase the space time yield from <0.1 g/L/hr to 

>3.0 g/L/hr
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Sorbent Performance – Optimized 

Preparation

• Reduced Preparation time of 24 hours was still able to provide a high yield 

while retaining the CO2 adsorption capacity (Sorbent performance)
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Performance in Flow Experiments
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• A working capacity of 5+% wt. CO2 at ~15% vol. CO2 was demonstrated 
• ~2.5% wt. CO2 at 4% vol. CO2

• Temperature and humidity have limited impact on working capacity
• Higher temperatures lowered the working capacity

• No significant impact of humidity up to 65%

5/15/20% CO2 in N2 at T = 30°C, GHSV = 2,400 h-1, 

30/50/65% RH Regen Purge gas: N2, Counter flows



Evaluation of Sorbent Life 
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• A stable working capacity of 5.5% wt. CO2 was demonstrated in counter flow 

desorption under simulated coal flue gas conditions

5/15/20% CO2 in N2 at T = 30°C, GHSV = 2,400 h-1, 30/50/65% RH

Regen Purge gas: N2, Counter flows

Parametric Tests Parametric Tests



Life Tests in Presence of Contaminants
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• Stable working 

capacity in the 

presence of flue gas 

contaminants such 

as humidity, NOx 

and SOx

• High stability up to 

65% RH, 500 ppm 

NOx, 50 ppm SOx

• Maximum ~20% 

drop in capacity 

under high SOx and 

NOx concentrations

15% CO2 in N2 at T = 30/45/60°C, GHSV = 1,000 h-1,      

0-6% H2O - Regen Purge gas: N2, Counter flows



Impact of Contaminants
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• Only <5% drop in 

working capacity was 

observed at 100 ppm 

NOx and 10 ppm SOx

• At 500 ppm NOx and 

50 ppm SOx the 

working capacity 

dropped by 10%

• After saturating the 

sorbent with 500 ppm 

NOx or 50 ppm SOx

the sorbent working 

capacity dropped by 

~ 20%

15% CO2 in N2 at T = 30/45/60°C, GHSV = 1,000 h-1, 0-6% 

H2O  - Regen Purge gas: N2, Counter flows
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Adsorption Cycle Modeling

CO2 N2

Hads

CO2
N2

• Initial modeling results from University of 

Alberta shows simple cycle schemes 

without addition of steam purge can get 

close to DOE targets

• More advanced cycle schemes with 

steam assisted VSA results in 95% CO2

purity with a CO2 levels in flue gas as 

low as 4% (NGCC simulation)
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Process Simulation (Rev. 4 basis)
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• Energy for CO2 capture is 26% lower compared to amine scrubbing

Capture Technology Sorbent Only Amine No Capture

Case Studies Case 1 B12B B12A

Gross Power, kWe 795,063        770,000 685,000     

CO2 Capture/Removal, kWe 47,679           29,530    -              

CO2 Purification, kWe -                 -          -              

CO2 Compression, kWe 58,141           44,380    -              

Balance of Plant, kWe 39,243           46,050    35,040        

Total Auxiliaries, kWe 145,063        119,960 35,040       

Net Power, kWe 650,000        650,040 649,960     

Net Plant Efficiency, % HHV 33.4 31.5 40.3

Carbon Capture, % 90 90 0

Coal Feed Rate, kg/h 258,208         273,628  214,112      



Reactor Vessel Design and Costing
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• Four radial beds per train 
(total of 16 beds)

• SA516-70 carbon steel, 0.5” 
thickness

• 120 in OD x 872 in T/T

Total P (across the entire system) 
=105 mbar

Module Size: 137.5MW

No. of Trains: 4
Beds/Train: 4

Total Beds: 16
Flue Gas Flow: 116.5m3/s

CO2 Flow: 1.96tonne/min

Capacity: 3.6%Wt%
Cycle Time: 1min

Sorbent Inventory: 54.5tonne/m3

Sorbent Density: 0.55tonne/m3

Bed Volume: 99.5m3

Bed Area: 7.3m2



Reactor Vessel Design and Costing
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• Rapidly actuating valves are 
identified to change the bed position 
in a few seconds

• 60 in NPS, 0.375 in thickness 
(standard schedule) process piping 
for flue gas and air regeneration 
lines

Sorbent Only System

Bed 1

Bed 2

Bed 3

Bed 4

336s 21s 21s 21s 21s 21s 21s 21s 21s

Adsorption - Flue gas flow Cocurrent Blowdown

Desorption - CO2 Product Out Desorption - Air Purge flow

Stage IIStage I Stage III Stage IV

Damper valves 

Price basis is 72” size



3-D Layout of the Sorbent System
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Cost of Capture Summary (Rev. 4 basis)
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• Cost of CO2 capture with VLP steam purge is ~$32.25/tonne

• Cost of CO2 captured is considerably lower for TDA’s CO2 capture system  

about 29.2% lower the reference Amine Case

Capture Technology Sorbent Only Amine No Capture

Case Studies Case 1 B12B B12A

Basis for Cost Estimates (Year) 2018 2018 2018

Net power, MW 650 650 650

Capacity factor (CF), % 85 85 85

Total plant cost (TPC), $ 2,053,929,454 2,468,373,000 1,364,033,000

Total overnight cost (TOC), $ 2,553,134,556 3,023,049,325 1,678,411,825

Total as spent capital (TASC), $ 2,946,317,278 3,488,598,921 1,937,578,752

LCOE $/MWh $/MWh $/MWh

Capital Charge (0.0707 X TASC) 43.04 50.96 28.30

Fixed Charges 13.73 16.13 9.48

Variable Costs 12.15 14.00 7.72

Fuel Costs 22.75 24.08 18.87

Byproducts (Credit) 0.00 0.00 0.00

Total (Excluding T&S) 91.67 105.18 64.37

CO2 T&S Costs 8.45 8.96 0.00

Total (Including T&S) 100.12 114.14 64.37

Cost of Capture $/tonne $/tonne $/tonne

Breakeven CO2 Sales Price (compared to SCPC W/O capture) 32.25 45.52 -

Breakeven CO2 emissions penalty (compared to SCPC W/O capture) 52.29 73.40 -



Sensitivity Analysis – CAPEX (Rev. 4 basis)
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• Total cost of CO2 Capture System including flue gas treatment and 

compression is $368 MM 

• Cost of CO2 capture ~$32.25/tonne

• CAPEX for CO2 capture needs to go below $274 MM to meet 

transformational CO2 capture targets (<$30/tonne)
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