Piperazine Advanced Stripper (PZAS™)
Front End Engineering Design (FEED)
DE-FE0031844

Gary T. Rochelle, Principal Investigator
Department of Chemical Engineering, The University of Texas at Austin

Krista Hill, NETL Project Manager

2022 Carbon Management Research Project Review Meeting
Wed, 11:25
August 17, 2022
PZAS FEED outline

• Project structure and Objectives
• PZAS: a superior 2G process developed with DOE support
• Mustang Station: low energy cost, abundant space, pipeline for EOR
• Design Decisions
• Project costs: capital, annual, business case
• Design Basis and Opportunities to improve and add value
• Conclusions
The Objective: Accurate installed cost of PZAS™ on NGCC at GSEC Mustang Station

Complementary Benefits:
• Develop commercial project at Mustang Station
• Qualify PZAS for use on NGCC cogen
• Provide commercial cost detail
 • Optimize PZAS & other 2G capture processes
 • Guide R&D of capture technology
Program Overview

• Funding ($5.3 MM)
 ○ 4.2 MM DOE
 ○ 1.1 MM cost sharing - ExxonMobil, Total, Chevron
 ○ [0.3 MM from Honeywell UOP outside DOE]

• Performance Period: 10/2019 – 6/2022

• Project Participants
 ○ Golden Spread Electric Cooperative (GSEC) – Host
 ○ University of Texas at Austin (UT) – Modeling/ Technology
 ○ Trimeric – Process Engineering
 ○ AECOM – EPC

○ Final Report Submitted on July 29, 2022
PZAS Process

CO₂ Product

Compressor and Coolers

Condenser

CO₂ Exchanger

Stack

Water Wash

Absorber

Flue Gas

Air cooling

Cold Rich Bypass

Warm Rich Bypass

Steam Heater

Stripper
PZAS development
comprehensive research & pilot plant demonstrations

• (2000-22) Research by 49 graduate students
 • Fundamental basis & Models

• (2006-09) UT Pilot of K$_2$CO$_3$/Piperazine (PZ), DE-FC26-02NT41440

• PZAS Pilot at 12% CO$_2$ for coal, DE- FE0005654
 • (2010-18) UT Austin
 • (2018) NCCC

• PZAS Pilot w 4% CO$_2$ For NGCC (CCP4)
 • (2016-18) UT Austin
 • (2019) NCCC
PZAS pilot at NCCC with CCP4 funding

- Heat duty 2.4 GJ/t
- Stripping at 302 F/90 psia with little degradation
- 90-95% CO$_2$ removal with 2 x 20 ft packing
- Pump-around intercooling of hot inlet gas
- Low PZ oxidation, <0.3 kg/t CO$_2$
- 304 SS up to 150$^\circ$C
- PZ emissions < 1 ppm
Host Site - Mustang Station
Golden Spread Electric Cooperative
Denver City, TX
Southwest Power Pool
Greatest wind penetration of U.S. IPO’s
460 MW NGCC
2 GT/1 ST
Changing perspective on the Mustang site

<table>
<thead>
<tr>
<th></th>
<th>Proposal, May 2019</th>
<th>FEED Report, July 2022</th>
</tr>
</thead>
<tbody>
<tr>
<td>Space</td>
<td>Excellent</td>
<td>Spread out, but still good</td>
</tr>
<tr>
<td>CO₂ Disposal</td>
<td>Existing pipeline with EOR</td>
<td>Existing pipeline to storage site</td>
</tr>
<tr>
<td>Cooling</td>
<td>Available cooling tower & water</td>
<td>No water; air cooling required</td>
</tr>
<tr>
<td>Steam supply</td>
<td>Extract from existing turbine</td>
<td>Gas-fired boiler</td>
</tr>
<tr>
<td>Fuel cost</td>
<td>$2/MMBtu w pipeline access</td>
<td>$8/MMBtu</td>
</tr>
<tr>
<td>CO₂ design rate</td>
<td>126 t/hr</td>
<td>190 t/hr</td>
</tr>
<tr>
<td>Electricity cost</td>
<td>Wholesale LMP = $20/MWh</td>
<td>Retail? = $100/MWh</td>
</tr>
<tr>
<td>Load Factor</td>
<td>>52%, higher with good CO₂ value and low fuel cost</td>
<td><52%, Lower with higher fuel cost & more renewables</td>
</tr>
<tr>
<td>Financing</td>
<td><5% with Non-profit</td>
<td>10% IRR with private capital</td>
</tr>
<tr>
<td>Capital cost</td>
<td>$270 million</td>
<td>$725 million</td>
</tr>
</tbody>
</table>
General Arrangement with two trains

General arrangement with two trains
• Each train treats all flue gas from 1 GT and one new gas boiler
• Turndown to match Mustang Station operation
• Sequenced, isolated maintenance
• Off-site fabrication of some large equipment (strippers)
• Sequenced construction
• Reasonable absorber size
Other Design Decisions

– 90% CO$_2$ removal at median ambient T

– Air cooling
 • Absorber intercooling
 • Water wash with 24-hour water balance in summer

– One package boiler for each train to provide steam for stripping
 • Boiler flue gas treated in absorber

– Moderate energy requirement by design (3.0 GJ/t CO$_2$)
 • 5 plate-and-frame exchangers per train
 • (2.5 GJ/t could be obtained with 10 exchangers/train)

– One 3-stage reciprocating compressor for each train
 • Air intercooling
Project Costs and Business Case
<table>
<thead>
<tr>
<th>Cost Category</th>
<th>Cost, $Million</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Direct Cost</td>
<td>384</td>
</tr>
<tr>
<td>Total Indirect Cost</td>
<td>93</td>
</tr>
<tr>
<td>Engineering</td>
<td>37</td>
</tr>
<tr>
<td>Insurance, Taxes, Bonds & Permits</td>
<td>19</td>
</tr>
<tr>
<td>Contingency</td>
<td>105</td>
</tr>
<tr>
<td>Contractor Overhead & Profit</td>
<td>60</td>
</tr>
<tr>
<td>Project Total Cost</td>
<td>698</td>
</tr>
<tr>
<td>Owner’s Cost</td>
<td>27</td>
</tr>
<tr>
<td>Total Overnight Cost</td>
<td>725</td>
</tr>
</tbody>
</table>
Direct costs (total DC = $384 million)

<table>
<thead>
<tr>
<th></th>
<th>Cost, $M</th>
<th>% of total</th>
<th>Potential Savings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air Cooling Systems</td>
<td>90.0</td>
<td>23</td>
<td>Use water</td>
</tr>
<tr>
<td>Absorber</td>
<td>37.0</td>
<td>10</td>
<td>Use Carbon Steel</td>
</tr>
<tr>
<td>CO₂ Compression</td>
<td>24.2</td>
<td>6</td>
<td>Shorten ductwork</td>
</tr>
<tr>
<td>Ductwork, Dampers, Fans</td>
<td>21.6</td>
<td>5.6</td>
<td>Revisit</td>
</tr>
<tr>
<td>Solvent Reclaiming</td>
<td>19.6</td>
<td>5.1</td>
<td>Use steam extraction</td>
</tr>
<tr>
<td>Stripper, CO₂ Conditioning</td>
<td>17.4</td>
<td>4.5</td>
<td>Use more exchangers</td>
</tr>
<tr>
<td>Steam Generation</td>
<td>14.1</td>
<td>3.7</td>
<td></td>
</tr>
<tr>
<td>Solvent Heat Exchangers</td>
<td>9.5</td>
<td>2.5</td>
<td></td>
</tr>
<tr>
<td>Solvent Storage</td>
<td>6.5</td>
<td>1.7</td>
<td></td>
</tr>
<tr>
<td>Description</td>
<td>Cost (MM $)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>-------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Annual Variable Operating Costs @ 52% LF</td>
<td>$21.5 MM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Natural Gas (417 MMBtu/hr) @$3/MMBtu</td>
<td>9.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15 % increase in total NGCC fuel rate</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[Use more exchangers to reduce heat duty]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[Extract Steam from existing turbine]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO₂ Tariff for transport and storage ($5/t)</td>
<td>4.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electricity (33 MW) @$25/MWh</td>
<td>3.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7 % decrease in net power from NGCC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[Replace Air Cooling with Cooling Water]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Piperazine solvent</td>
<td>2.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other (Caustic, Water, TEG, N2, waste)</td>
<td>1.9</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Annual Fixed Operating Costs

<table>
<thead>
<tr>
<th>Description</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Property Taxes and Insurance (Year 1) @ 2.5%</td>
<td>18.2</td>
</tr>
<tr>
<td>Maintenance Labor & Material</td>
<td>9.9</td>
</tr>
<tr>
<td>Operating Labor</td>
<td>3.3</td>
</tr>
<tr>
<td>Admin & Support Labor</td>
<td>1.2</td>
</tr>
</tbody>
</table>

Total Annual Fixed Operating Costs: **$32.6 MM**

Note: Property Taxes and Insurance (Year 1) @ 2.5% can be negotiated for a local tax break.
Net Cash Flow at base case conditions
52% Load Factor, $3/MMBtu, $25/MWh

<table>
<thead>
<tr>
<th>Table Title</th>
<th>$million</th>
</tr>
</thead>
<tbody>
<tr>
<td>Income from 45Q @ $85/t</td>
<td>64</td>
</tr>
<tr>
<td>Fixed annual costs</td>
<td>-32.6</td>
</tr>
<tr>
<td>Variable annual costs</td>
<td>-21.5</td>
</tr>
<tr>
<td>Net Cash Flow</td>
<td>+9.9</td>
</tr>
</tbody>
</table>
Economic Performance of the Mustang Project

- $5/t Storage
- $3/MMBtu natural gas
- $25/MWh electricity

IRR (%) vs. Cost of Capture ($/t CO₂)

- 52% load factor
- 85% load factor
Takeaways

– Completed FEED
 • Defines a technically feasible design for Mustang
 • Capital cost of $725 million
 • Cost of capture for 10% IRR is $105/t CO₂ (w $3/MMBtu, 85% LF)

– Major opportunities for enhanced performance and reduced cost
 • Steam extraction from the existing steam turbine
 • Additional absorber packing to get > 97% CO₂ removal, approaching C neutral
 • Additional exchanger area to reduce natural gas consumption

– Detailed, public FEED provides basis for an NGCC or Cogen demo
 • Ideal site: cooling water, steam extraction, low renewables, high load factor
Future work

– Further development at Mustang is not expected
– Honeywell UOP design/marketing to all applications & sites with proprietary knowhow
– Honeywell actively developing opportunities for a potential FOA for demonstration
– UT Modeling to make public use of FEED results – funded by CCSI2, TxCMP, et al.

• Optimize operations at GSEC with the existing design
• Optimize design at GSEC with estimates for improvements
• Develop & optimize design for NGCC at other sites, including stakeholder sites
 o NGCC at ideal conditions - cooling water, steam extraction, low renewables, high load factor
 o CoGen
• Develop and optimize designs of PZAS for other applications
Acknowledgements

This work was performed with funding from the U.S. Department of Energy under Co-operative Agreement DE-FE0031844. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Additional funding was received as cost-sharing from ExxonMobil, Chevron, and TotalEnergies.

The authors are grateful to Golden Spread Electric Cooperative for providing the site for this study.

Other Contributors

UT Austin: Fred Closmann, Miguel Abreu, Benjamin Drewry, Tianyu Gao, Jorge Martorell, Athreya Suresh Babu
AECOM: William A. (Bill) Steen, Karen Farmer, Scott Bryan, Matt Bernau
TRIMERIC Corp Andrew Sexton, Katherine Dombrowski, Duane Myers, Michael Marsh, Brad Piggott, Rosalind Jones
Kronos Management, LLC: Jeff Lee
High Removal with PZAS at Mustang

97.2% removal at constant ldg

Lean loading: 0.2
Gas T: 116 °C
PA T: 30 °C

Design

Rich loading

Penetration = 1 - removal

25 ft, 1 PA

40 ft, 1 PA
Chronology of PZAS FEED

- August 19, 2019 – Proposal accepted for contract negotiation
- January 22, 2020 – Meeting with GSEC in Amarillo
- November 3 – Process Design Package
- March 14, 2021 – Draft Equipment List
- October 28 – Model Review
- November 18 – Completion of Capital Cost Estimate
- March 31, 2022 – Draft FEED Report
Organizational Chart

DOE-NETL Contracting Officer
Krista Hill

Host Site
Mustang Station

Project Manager
Gary Rochelle - UT

Cost Share
Exxon/Chevron/Total

Task 1 Management
Gary Rochelle - UT
Bill Steen - AECOM

Task 2 Process Design
Andrew Sexton - Trimeric

Task 3 Process Modeling
Fred Closmann - UT

Task 4 Env. Permitting
Steve Jelinek - AECOM

Task 5 Discipline Engineering
Bill Steen - AECOM

Task 6 Constructability
Bill Steen - AECOM

Task 7 Cost Estimate
Bill Steen - AECOM

Task 8 Economic Analysis
Andrew Sexton - Trimeric

Task 5 Engineering
Scott Bryan - AECOM

Task 5.1 Process
Andrew Sexton & Katherine Dombrowski - Trimeric
Fred Closmann - UT
Karen Farmer - AECOM

Task 5.2 Mechanical
Sarah Douglass - AECOM

Task 5.3 Electrical
Mike Hachem - AECOM

Task 5.4 Int. and Controls
Jim Surber - AECOM

Task 5.5 Civil/Structure
Julie Joyo - AECOM

Task 5.6 Fire Engineering
TBD - AECOM

Task 5.7 Pipeline/Compressor
Brad Piggott - Trimeric
Jeff Stephens - AECOM
Opportunities and Constraints at Mustang Station

- Ideal ample space at the site
- Competitively priced natural gas
- CO$_2$ Pipeline & EOR + potential storage
- Summer Ambient T (cool nights, hot days)
- Cooling water not available for capture system
- Competitive power grid (SPP) with renewables
 Greatest wind penetration of U.S. IPO’s