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CCSI2: Carbon Capture Simulation for Industry Impact
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History of ML in CCSI
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How do we use ML for CCSI2?
CFD is critical for the fundamental 
understanding, to inform process and 
system level modeling.
• Need local information on transport 

phenomena to understand driving forces 
• Can be incorporated into design 

optimization to optimize the device

Machine learning surrogates, such as Deep 
Fluids (DF) and MeshGraphNets (MGN), can 
reduce the computational burden of time-

consuming simulations. 
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Simulation time is a bottleneck that impedes 
high-level modeling.
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Computational approaches to screening parameters ….
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Metric Computational Fluid Dynamics (CFD) Machine Learning (ML) Surrogates
Speed Slow:

2D model takes 1 hour to simulate
Fast:
2D model takes 1 second to simulate

Effort to construct High: 
Equations, assumptions, numerical 
methods, software packages, …

Low: 
Common architectures across 
problems reduce effort required for a 
‘good’ model

Accuracy Variable:
Depends on the model/effort

Variable:
Depends on accurate CFD training 
data and surrogate’s ability to bridge 
from ”toy” problems in literature to our 
large-scale data

Downstream 
modeling/problems

Ill-suited:
Generally, too slow to scale to large, 3D 
simulations

Well-suited:
Scaling made feasible by speed of 
reduced models



Growth in Machine Learning and the Physical Sciences
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We explore a range of ML surrogates
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DeeperFluids
• Builds on Kim et al., 2019
• Interpolates CFD mesh onto regular grid
• Uses image-processing ML techniques 
• Published in IAAI 2022 (Bartoldson et al., 2022)
• Included as a plugin for FOQUS
• Code: https://github.com/CCSI-Toolset/DeeperFluids

MeshGraphNets
• Builds on Pfaff et al., 2021
• Uses same mesh as CFD
• More faithful to physics than DF
• Code: https://github.com/CCSI-Toolset/MGN

Ground truth

Prediction

PredictionGround Truth

https://github.com/CCSI-Toolset/DeeperFluids
https://github.com/CCSI-Toolset/MGN
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Carbon capture systems have many parameters to tune
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Image source: Heldebrant et al., 2019



Carbon capture systems have many parameters to tune
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Image source: Heldebrant et al., 2019



Potential approach: Run a CFD simulation to understand 
effect of each parameter…
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Image source: Heldebrant et al., 2019



Screen parameter settings to optimize efficiency---
interfacial area (IA), liquid holdup, pressure drop, etc.
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Gas-liquid
interface



Problem: CFD is too slow to fully explore parameter space
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Computational fluid dynamics (CFD) modeling

Numerical methods/software for CFD
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Surrogates learn from CFD data, are tested against CFD data
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50 2D simulations
(2D slices from 3D RCM)
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Deep Fluids (DF)
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Encode input to low-dim latent space Decode back to high-dim true space

Forward pass in latent space



LLNL’s Deeper Fluids Surrogates
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Building on the original surrogates…

We find better performance!

And big speedups!
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MeshGraphNets (MGN)
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t = 0



MeshGraphNets (MGN)
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t = 0



MeshGraphNets (MGN)
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t = 0

Input
A patch within the original frame

Patch:
406 Nodes
1084 Edges

Frame:
150073 Nodes
439935 Edges

Nodes and edges are non-
uniformly distributed. 



MeshGraphNets (MGN)
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t = 0

Input
A mesh within the original frame

𝑬𝑬Encoding 𝑬𝑬
Each node and edge has its own 
embedding.

Message Passing 𝑴𝑴
Neighboring edges and nodes 
exchange info to update embeddings.

𝑴𝑴𝑛𝑛 �̂�𝑧0∗

𝑫𝑫

�𝑥𝑥0′

�𝑥𝑥1

Decoding 𝑫𝑫
Updated embeddings are decoded, 
which represent the gradient in 
physical space.

Forward pass 𝑭𝑭
Via forward Euler

𝑭𝑭

�̂�𝑧0

𝑥𝑥0

𝑴𝑴𝑛𝑛 �̂�𝑧1∗

𝑫𝑫

�𝑥𝑥1′

�𝑥𝑥2

𝑭𝑭

�̂�𝑧1

𝑬𝑬

…

…�𝑥𝑥𝑡𝑡′ = 𝑫𝑫 �̂�𝑧𝑡𝑡∗
�̂�𝑧𝑡𝑡∗ = 𝑴𝑴𝑛𝑛 𝑬𝑬 �𝑥𝑥𝑡𝑡

�𝑥𝑥𝑡𝑡+1 = �𝑥𝑥𝑡𝑡 + �𝑥𝑥𝑡𝑡′ Δ𝑡𝑡



LLNL’s MGN Surrogates
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Implemented the first public version of MGN in PyTorch

MGN:

CFD:

MGN:

CFD:

CCSI-Toolset/MGN repository is popular!



36



37



38



39





41



42



Physics-informed surrogates
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Momentum Model Input

Easy to predict next momentum state!

Desired Output

Difficult to predict next velocity state!

Desired Output

Velocity Model Input



• MGN extensions/improvements
• Improving scalability
• Architectural improvements
• Training/optimization improvements

• Curriculum learning
• Incorporating physics constraints/expert knowledge

• Explainability methods
• Surrogate models with CMU/PNNL data
• Design optimization

• Integrate MGN into FOQUS

Work in progress
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https://github.com/CCSI-Toolset/MGN

https://github.com/CCSI-Toolset/MGN
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For more information
https://www.acceleratecarboncapture.org/

Contact Info:
Phan Nguyen
nguyen97@llnl.gov

https://www.acceleratecarboncapture.org/
mailto:nguyen97@llnl.gov
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