Comparison of FEED Results from Mustang Station and Panda Power

DE-FE0031844 and DE-FE0031848

Jorge L. Martorell University of Texas at Austin

U.S. Department of Energy

National Energy Technology Laboratory Carbon Management Project Review Meeting August 15 - 19, 2022 "Mustang FEED" DE-FE0031844, University of Texas
Cost estimate for PZAS, second-generation amine scrubbing process
Final report submitted July 2022: (not yet available online)

"Panda FEED" DE-FE0031848, Bechtel

Cost estimate for a generic design using low-cost solvent (MEA)

Final report submitted March 2022: https://doi.org/10.2172/1836563

Objective of this comparison

- Both use amine scrubbing CO₂ capture at NGCCs in Texas
- Results were published in extensive detail
- Validate cost estimates, draw insights to reduce capital cost

Key design decisions

Direct field cost adjustment

Breakdown of costs by process area

Scaling Mustang cost to same basis as Panda FEED

Comparison of absorber design alternatives

Panda handles 19% less flue das, cantures 31% less CO

Panda nandies 19% less lide gas, captures 31% less co ₂						
	Mustang	Panda				
NGCC flue gas flow [t/hr]	2880	3700				
Flue gas feed to capture unit [t/hr]	3160 (NGCC + boiler)	2530				
Captured CO, stream						

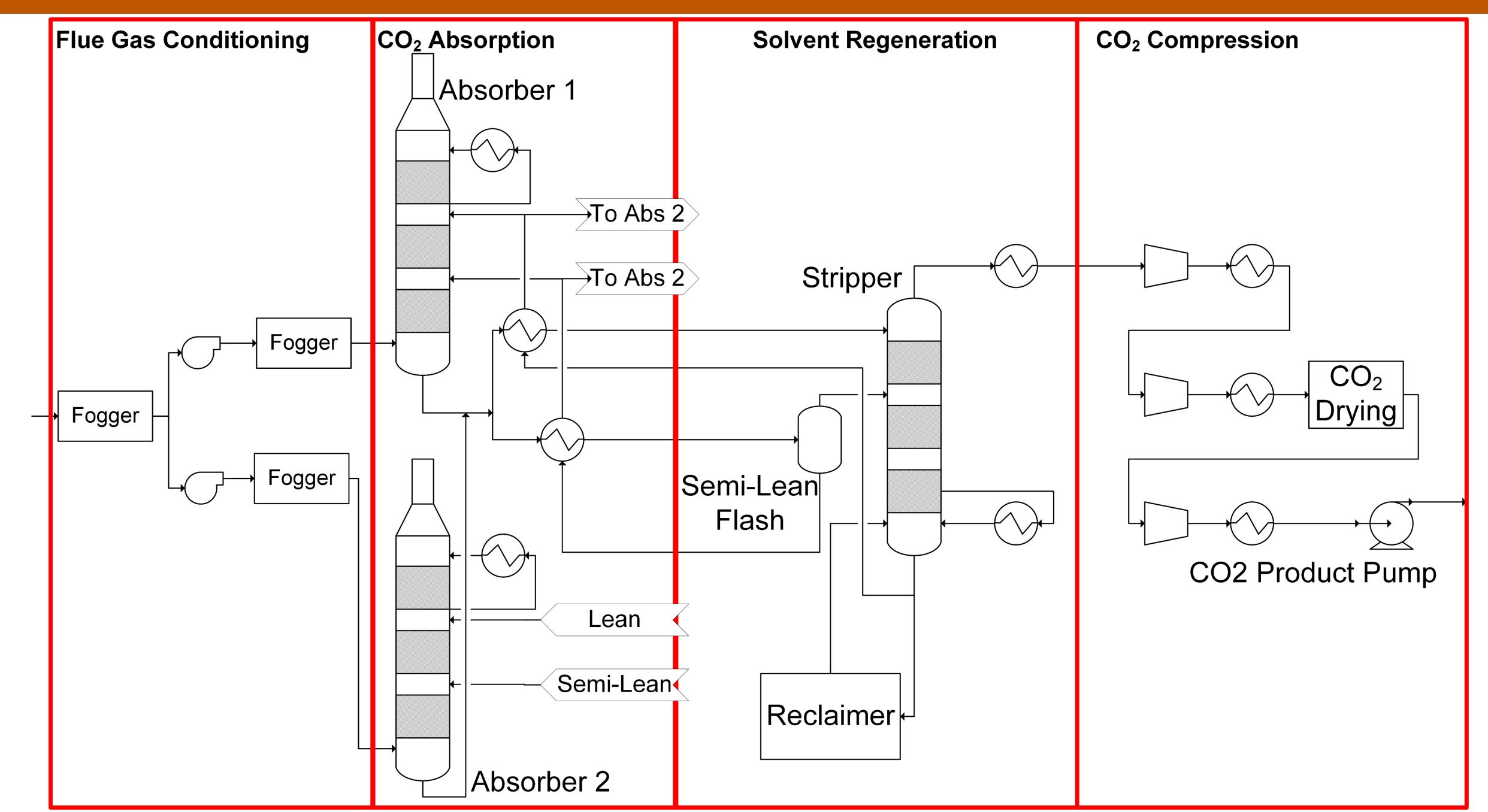
200 130 [t/hr]

90

85

Design Capture [%]

Design Decisions

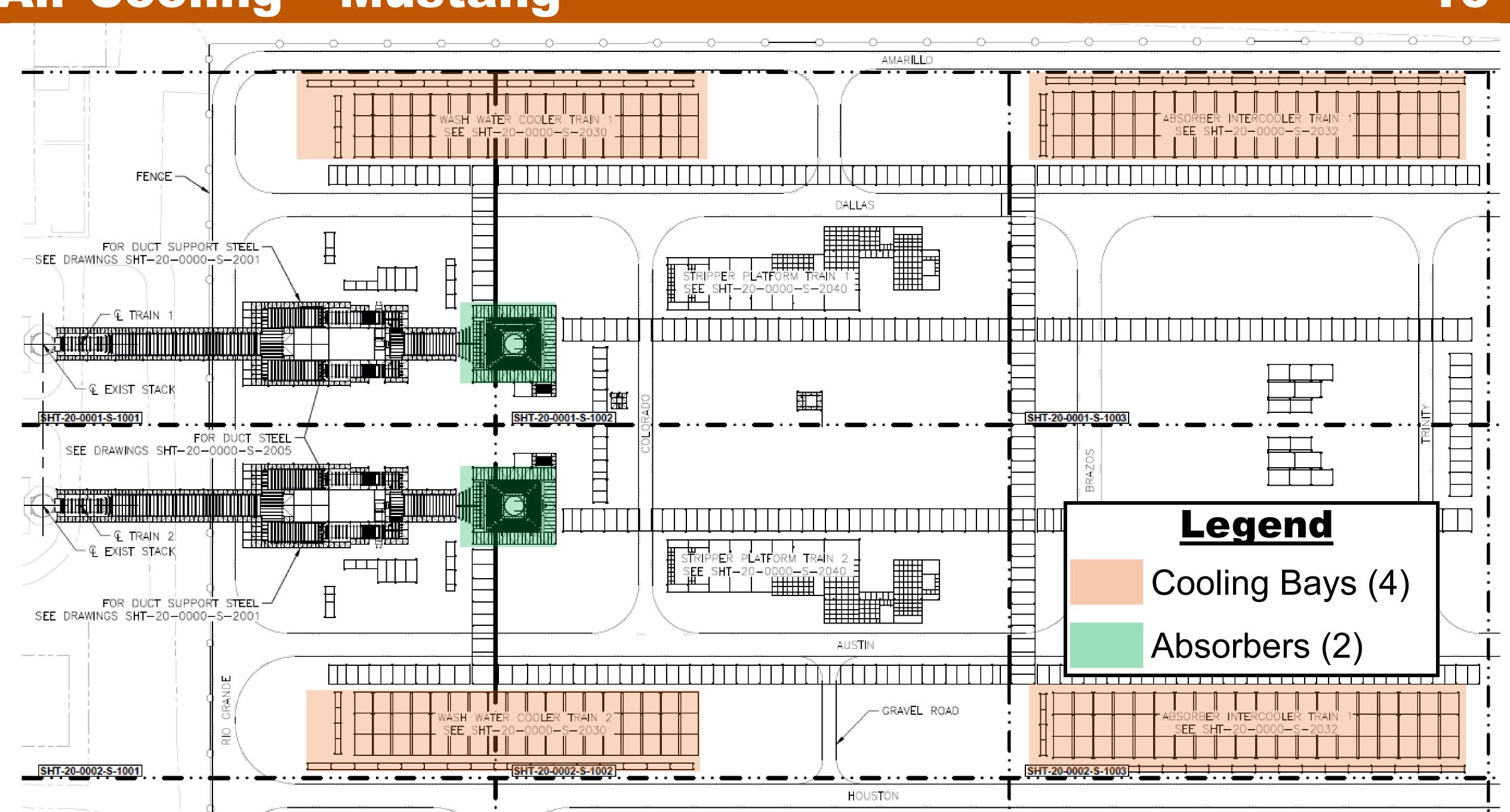

	Mustang	Panda			
Solvent	5 m PZ (~30 wt%)	35 wt% MEA			
Steam	Package boilers	Steam extraction			
Cooling	Air cooling	Cooling water from existing site capacity			
	Bottom-up cost estimate: • Vendor quotes for major equipment • Piping, ductwork, I&E, civil, etc. estimated from detailed site layouts				
	-20% to +30%	+/- 20%			

Capital Cost					
Cost (\$ Millions)	Mustang	Panda			
Total cost	\$724	\$477			
Direct cost, as reported	\$385 (A)	\$450 (A)			
Detailed eng. & commissioning	\$37 (B ₁)	\$ 50			
Indirect field costs	\$93 (B ₂)	\$59			
Contingency	\$104 (Excluded)	\$34 (C)			
Owner's cost	\$27 (Excluded)	\$5 (D)			
Contractor's ovhd & profit	\$60 (F)	(Included)			

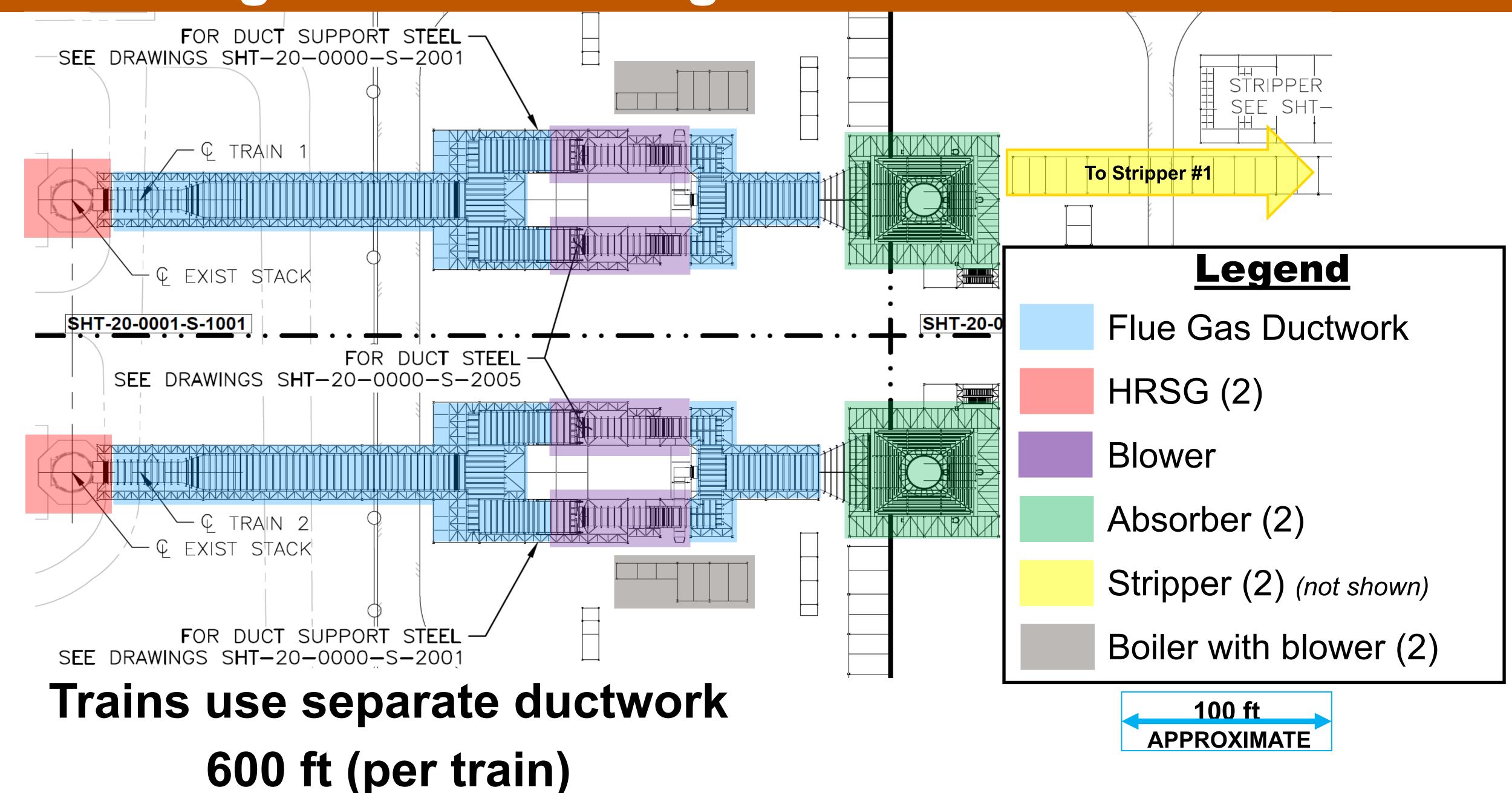
Contractor's ovhd & profit \$60 (E) (Included)

Adjusted direct field cost $A + B_1 + B_2 + E$ \$411 A - C - D

Panda Flowsheet


	Mustang		Panda
Flue Gas Handling	HRSG to Abs: 600 [ft] No quench	9%	29% HRSG to Abs: 1290 [ft] Water fogging
CO ₂ Absorption	Includes air coolers Rectangular absorber No trim cooler Pumparound	58%	Cooling water from existing cooling towers 34% Cylindrical absorber Trim cooler No pumparounds

Percentages indicate direct field cost for each process area


ousts by I locks a Alba						
	Mustang			Panda		
Steam Generation	Package boilers + associated equipment	7%	N/A			
Solvent Regeneration	2x strippers Pressure: 5.6 [bara] 3x 2-stage vacuum reclaimers	16%	18%	1x stripper Pressure: 2.3 [bara] 2-stage flash reclaimer		
Compression	2x 3-stage reciprocating	10%	19%	1x 3-stage centrifugal Heat integrated		

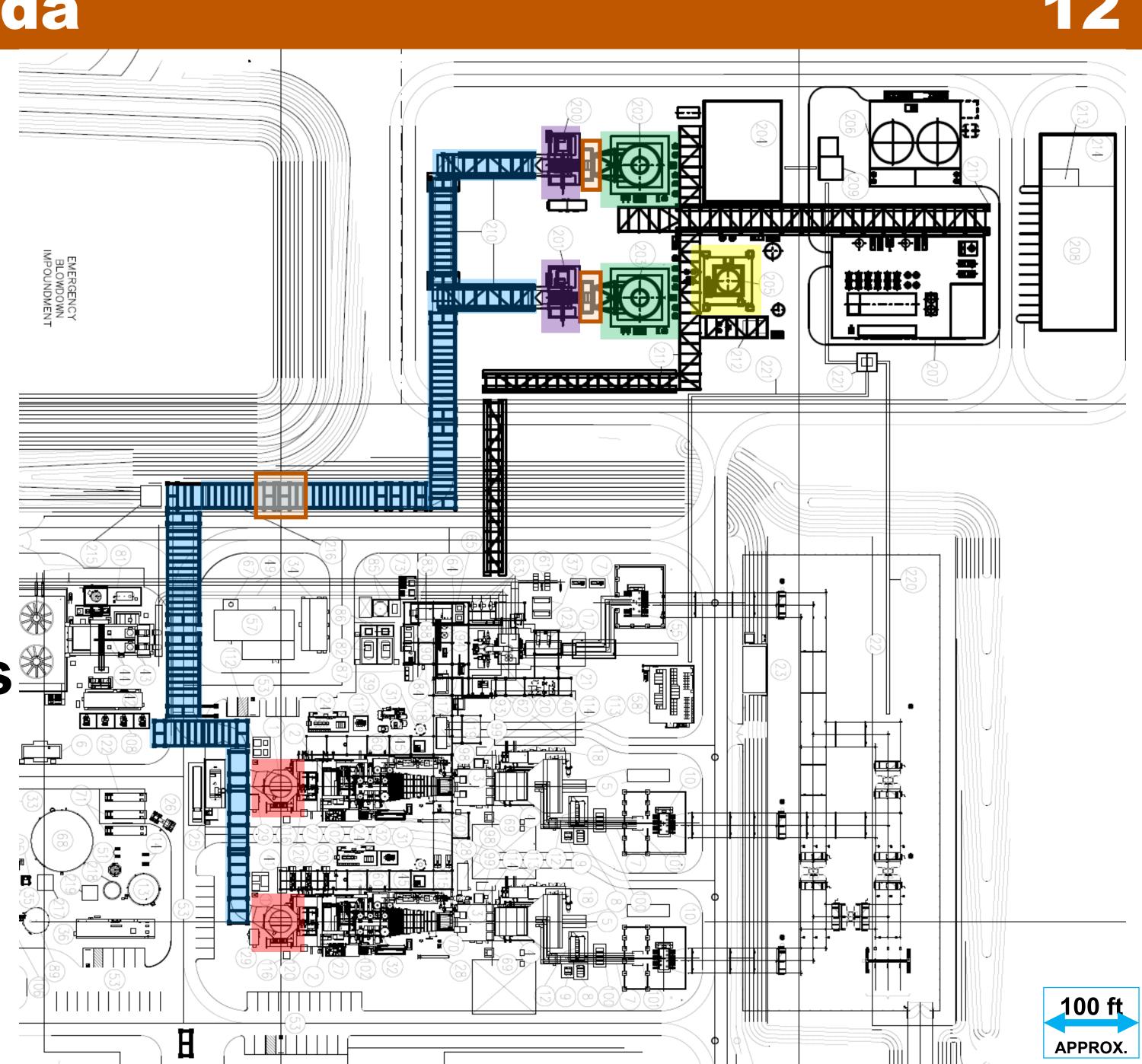
Percentages indicate direct field cost for each process area

Air Cooling – Mustang

Site Arrangement – Mustang

Site Arrangement – Panda

Legend


- Flue Gas Steel Rack
- HRSGs (2)
- Blower
- Absorbers (2)
- Stripper (1)
- Foggers (3)

Common duct to absorbers

Carbon steel: 565 ft

Stainless steel: 725 ft

Total: 1290 ft

Direct cost of each process sub-area scaled with flue gas flow rate or CO₂ flow rate:

$$Cost_{scaled} = Cost_{FEED} \times (\frac{CF_{Panda}}{CF_{Mustang}})^{(0.6)}$$

- Flue gas flow at Panda is 81% of Mustang
- CO₂ capture flow at Panda is 69% of Mustang

Scaling intended to represent estimated cost for same PZAS process configuration and same host site constraints (ductwork, package boilers, air cooling, etc.), but with the design flows of the Panda FEED.

Cost	Mustang -	Mustang -	Panda -
(\$ Millions)	Adjusted	Scaled	Adjusted
TOTAL	\$574	\$489	\$411

Absorber Design		Mustang FEED	Mustang Alternate	Panda FEED	Panda Scaled
FG to absorber	t/hr	1580	1580	1267	
Cross-section		Rectangular	Round	Round	Round
Cross-section area	m^2	175	175	109	175
Packed height	m	10.6	10.6	19.0	10.6

Absorber 3S represents Absorber 3 (Panda) scaled to same crosssection area and packed volume as Absorber 1 (Mustang)

		1	2B	3	35	
Absorber Design			Mustang Alternate	Panda FEED	Panda Scaled	
Material cost	\$MM	11.3	10.7			
Labor cost	\$MM	7.2	10.2			
Total cost (reported)	<i>\$MM</i>	18.5	20.9	16.0	16.2	
Adjustment for scope	\$MM	-1.7	-1.0			
Contingency	\$MM		-1.7	-1.3	-1.3	
Contractor overhead	\$MM	+2.9				
Cost of scope	<i>\$MM</i>	19.7	18.2	14.7	14.9	
Scope includes single absorber with engineered procurements and steel, excludes foundation, instrumentation, piping, pumps						

- Adjusted direct field costs: \$574MM Mustang to \$411MM Panda
- Scaling Mustang to Panda capacity: \$493MM (M) to \$411MM (P)

 Rectangular absorber appears 10% to 30% more expensive than cylindrical designs, with higher material costs and lower labor costs

 Absorber estimates adjusted to same scope, dimensions, and packed volume: \$19.7MM, \$18.2MM, \$14.9MM

 Academic studies use simple cost models, neglect significant costs especially site-specific factors (e.g., layout, steam extraction, water) Collaborating with Bechtel to refine FEED comparison for publication and upcoming poster presentation at GHGT-16 conference (October 2022)

- Beginning yearlong project sponsored by ExxonMobil
 - Design and optimization of CCS for cogeneration applications
 - Develop gPROMS® process design/cost estimation model
 - Apply learnings from cost comparison to develop CAPEX model
 - Rigorous optimization to reduce costs, perform sensitivity analysis

Thank you to the sponsors of this work:

DOE, ExxonMobil, Total, Chevron

Contributors

Gary Rochelle (University of Texas at Austin)

Michael Baldea (University of Texas at Austin)

Bill Elliott (Bechtel)

Camila Bauer (Bechtel)

This work was performed with funding from the U.S. Department of Energy under Co-operative Agreement DE-FE0031844. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.