

Engineering Scale Design and Testing of Transformational Membrane Technology for CO₂ Capture

Shiguang Li,¹ Yang Han,² Winston Ho,² Travis Pyrzynski,¹ Weiwei Xu,¹ Mark Stevens,¹ Douglas Heim,¹ Howard Meyer,¹ Andrew Sexton,³ and Will Morris⁴

1: GTI Energy, 2: The Ohio State University (OSU)

3. Trimeric Corporation (Trimeric), 4. Wyoming Integrated Test Center (ITC)

U.S. Department of Energy National Energy Technology Laboratory Carbon Management Project Review Meeting August 15 – 19, 2022

Project Overview

- Performance period: October 1, 2020 July 31, 2025
- **Total funding**: \$16.25 MM (DOE: \$13 MM, Cost share: \$3.25 MM)
- Objectives: 1) Design and build an engineering-scale CO₂ capture system using OSU's transformational membrane in commercial-sized modules; 2) Conduct tests on coal flue gas at ITC and demonstrate a continuous, steady-state operation for a minimum of two months; and 3) Gather data necessary for further process scale-up
- Goal: Achieve DOE's Transformational Carbon Capture performance goal of CO₂ capture with 95% CO₂ purity at a cost of \$30/tonne of CO₂ captured and at a cost of electricity (COE) at least 30% less than baseline CO₂ capture approaches by 2030

Team :	Member	Roles				
	GTI ENERGY	 Project management and planning Skid design, selection of skid fabricator, skid installation, and testing Support TEA and EH&S assessment 				
	The Ohio State University	 Participate in project management and planning Membrane and module fabrication and QA/QC testing Support skid design and field testing, TEA and EH&S study 				
	XITC	Site host, lead on testing site preparation				
	TRIMERIC CORPORATION	TEA and EH&S assessment				

Testing on Coal Flue Gas at Wyoming Integrated Test Center

Component	Minimum	Maximum	Average				
Pressure (psig)	0.36	0.54	0.45				
Temperature (°C)	80	90	85				
Gas composition (volume)							
CO ₂	12.0%	13.1%	12.7%				
O ₂	1.7%	4.2%	2.5%				
N ₂ + Ar	66.7%	66.7%	66.7%				
H ₂ O	18.3%	18.1%					
Contaminant levels (volume)							
SO ₂	0.0 ppm	114.9 ppm	23.1 ppm				
NO _x	19.2 ppm	38.4 ppm	27.8 ppm				

Process Description

Roadmap

Task 1 – Project management and planning (*throughout the project*)

OSU Membrane Structure and Transport Mechanism

Simplicity of membrane for low cost: thin selective amine polymer layer on polymer support

High-selectivity due to facilitated transport mechanism

OSU Funding History and Progression of Module Scaleup

OSU Progression of Membrane Performance

Task 2 progress

Continuous Fabrication of Polymer Support

1,500 ft of quality support has been prepared; 100% of BP1 commitment

Bicontinuous Polymer Support Fabricated

20% surface porosity; 130,000 GPU§ CO₂ permeance

\$ 1 GPU = 10⁻⁶ cm³ (STP) cm⁻² s⁻¹ cmHg⁻¹ † TFC = thin-film composite

Continuous Fabrication of Transformational Membrane

1,400 ft of prototype membrane has been prepared; 100% of BP1 commitment

High CO₂/N₂ Separation Performance Achieved/Confirmed

Commercial-Size 8-inch Diameter Spiral-Wound (SW) Membrane Elements/Modules Fabricated

Individual SW element (ø8" and 35 m²)

3 SW elements have been prepared;
 50% of BP1 commitment

Individual SW Element QA/QC: Good Quality Confirmed

Task 1.3 progress

Initial TEA Basis

Two Cases:

- Two stage (90% capture): for comparison to DOE reference cases
- Single stage (70% capture): believed to be most economical process configuration

Membrane Performance:

- Operating temperature: 77°C
- Impurity tolerance: 3 ppmv SO₂, 4 ppmv NO₂
- CO₂ permeance: 3,500 GPU
- CO₂/N₂ selectivity: 167
- Product: CO₂ Purity >95 vol%, O₂ <10 ppmv</p>

Cost of Electricity and Cost of CO₂ Capture

	Unit	Case B12A (no CO ₂ capture)	Case B12B (90% capture)	Two Stage Membrane (90% capture)	Single Stage Membrane (70% capture)	DOE Goal
COE	mills/kWh	64.4	105.2	100.5	89.1	
Incremental Cost of CO ₂ Capture	mills/kWh	-	40.8	36.1	24.7	
Increase in COE vs. Case B12A	%	-	63.4%	56.1%	38.4%	30%
Cost of CO ₂ Capture	\$/tonne	-	45.63	40.32	38.62	30

- Inlet flue gas compression is the largest capital cost center
- Membranes are less than 10% of the total purchased equipment costs

Sensitivity Study: Costs Can Potentially Decrease to \$36.38 (90% Removal) and \$33.61 (70% Removal) /tonne of CO₂ Captured

 Sensitivities: 1) direct contact cooler (DCC) removal, 2) turboexpander cost reduction, and 3) flue gas compressor cost reduction

Task 3 progress

Initial Design Completed, Bid Package Issued, Bids Received, Selection of Skid Fabricator in Work

Risk Assessment: Challenges and Mitigation Strategies

Technical Challenges/Risks

1) Corrosion or particulates fouling of membrane equipment <u>Mitigation</u>:

- 1a: Select materials of construction based on lessons learned from GTI's previous engineering scale project
- Ib: Modify process conditions and add pre-treatments

2) 95% CO₂ purity not achieved <u>Mitigation</u>:

•2a: Adjust pressure, temperature, flow rate conditions

3) CO₂ capture cost not in line with the expected outcome <u>Mitigation</u>:

- •3a: Optimize process design
- •3b: Optimize equipment selection

Consequence

Technology Development Path / Future Plan

Summary

- 1,400 ft of the prototype membrane fabricated, which is 100% of the total amount for BP1
- Prototype membrane exhibited CO₂ permeance of ~3,500 GPU and a CO₂/N₂ selectivity of ~160 at 77°C, which was consistent with the OSU Gen II membrane performance obtained previously
- Initial EH&S and TEA Topical Reports submitted to DOE in 2021
 - 90% CO₂ removal: \$40.32/tonne of CO₂ captured (12% reduction vs. B12B)
 - 70% CO₂ capture: \$38.62/tonne of CO₂ captured (15% reduction vs. B12B)
 - Cost has potential to be further decreased to \$33.61 (70% removal) /tonne of CO₂ captured
- Initial design package completed; selection of skid fabricator ongoing

Acknowledgements

Financial and technical support

DE-FE0031946

- DOE: Andrew O'Palko, Andy Aurelio, Dan Hancu, José Figueroa and Lynn Brickett
- Partners

Appendix – Project Organization and Structure

Appendix – Gantt Chart

ID	Task	MS No	Task Name	Start	Finish	0112	2021	2022	2023 2024 2025 2024 2025 2025 2025 2025 2025 2025 2025
1	1.1		Project management and planning	Thu 10/1/20	Thu 7/31/25	Quis			GT.ITC
2		M1.1	Submit updated project	Sun 2/28/21	Sun 2/28/21		♦ 2/28		
3		M1.2	Complete kickoff meeting	Wed 3/31/21	Wed 3/31/21	-			
4	1.2		Technology maturation	Thu 10/1/20	Wed 6/30/21		GTI,OSU	I Contraction	
5		M1.3	plan Submit technology	Wed 3/31/21	Wed 3/31/21	-	♣ 3/31		
6	13		maturation plan to DOE	Thu 10/1/20	Wed 6/30/21		GTUTC	OSU Trin	reric
-	1.5		TEA and EH&S studies	Wed C/20/24	Wed 0/30/21		611,110,1	000,1111	
<i>′</i>		IVI 1.4	EH&S assessment topical reports	Wed 6/50/21	Wed 6/30/21		♦ 6/30		
8		M1.5	Issue final detailed TEA and EH&S assessment	Thu 7/31/25	Thu 7/31/25				♦ 7/31
9		M1.6	Submit final technical reno	Thu 10/30/25	Thu 10/30/25	-			10/30
10	2.0		Fabrication and testing of	Thu 10/1/20	Mon 10/31/22	1			OSU
			prototype membane and modules						
11		M2.1	Achieve CO2/N2 selectivity ≥140 (minimum requirement for 95 vol.% purity in the permeate side) and CO2 permeance ≥3,000 GPU for prototype membrane modules	Mon 10/31/22	Mon 10/31/22				♦ 10/31
12	3.0		Design and costing of the skid and skid manufacturer selection	Tue 6/1/21	Sun 7/31/22				OSU,GTI,ITC
13		M3.1	Issue initial engineering plant design package for	Sat 4/30/22	Sat 4/30/22			♦ 4	1/30
14		M3.2	Complete selection of skid	Sun 7/31/22	Sun 7/31/22				♦ 7/31
15	4.0		Detailed engineering	Fri 4/1/22	Mon 10/31/22				GTI,ITC,OSU
16		M4.1	design of the skid Issue engineering plant	Mon 10/31/22	Mon 10/31/22				♦ 10/31
17	5.0		design package Procurement and	Mon 10/31/22	Mon 7/31/23	-			GTI
18		M5 1	construction of the skid	Mon 7/31/23	Mon 7/31/23				▲ 7/31
10	6.0		the engineering scale skid	Mon 10/31/22	Wed 1/31/24				0511
19	0.0		fabrication and QA/QC testing	Mon 10/31/22	Wed 1/31/24				030
20		M6.1	Sufficient commercial-sized modules fabricated for engineering scale testing; QC/QC tests indicate >3,000 CO2 permeance achieved and CO2/N2 selectivity ≥140 achieved for these modules	Wed 1/31/24	Wed 1/31/24				♦ 1/31
21	7.0		Testing site preparation	Mon 10/31/22	Tue 1/30/24				GTI,ITC
22		M7.1	Complete site preparation at ITC	Mon 7/31/23	Mon 7/31/23				♦ 7/31
23	8.0		Skid installation at testing site	Sat 7/1/23	Wed 1/31/24	1			GTI,ITC,OSU
24		M8.1	Complete engineering skid installation at ITC	Wed 1/31/24	Wed 1/31/24				♦ 1/31
25	9.0		Skid commissioning	Sun 1/1/23	Tue 4/30/24	1			GTI,ITC,OSU
26		M9.1	Complete on-site system	Tue 4/30/24	Tue 4/30/24				♦ 4/30
27	10.0		Parametric testing	Tue 4/30/24	Thu 10/31/24	-			GTLITC.OSU
28	.0.0	M10.1	Validate the achievement	Thu 10/31/24	Thu 10/31/24	1			♦ 10/31
			of 60-90% CO2 removal rate with 95% CO2 purity during parametric testing; continuous steady-state operation conditions identified						
29	11.0		Continuous steady-state operation	Fri 11/1/24	Thu 7/31/25				GTI,ITC,OSU
30		M11.1	Complete steady-state operation for a minimum of two months; achieve a 60-90% CO2 removal rate with 95% CO2 purity	Thu 7/31/25	Thu 7/31/25				♦ 7/31
31	12.0		Identification of commercial membrane	Sat 2/1/25	Thu 7/31/25	1			GTI,OSU
32		M12.1	Commercial membrane	Thu 7/31/25	Thu 7/31/25	1			♦ 7/31
			manufacturer identified for the next phase 10 MWe						
33	13.0		scale development Removal of the skid from	Thu 5/1/25	Thu 7/31/25	-			
			testing site						Shine -
34		M13.1	Remove pilot-scale	Thu 7/31/25	Thu 7/31/25				♦ 7/31
			system and clean up the testing site						

24

Disclaimer

This presentation was prepared by GTI Energy and OSU as an account of work sponsored by an agency of the United States Government. Neither GTI Energy, OSU, the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors herein do not necessarily state or reflect those of the United States Government or any agency thereof.