Framework for Optimization, Quantification of Uncertainty, and Surrogates (FOQUS) – Capabilities and Applications

Anuja Deshpande a,b

a National Energy Technology Laboratory
b NETL Support Contractor

Carbon Management Project Review Meeting
Aug. 17, 2022
Presentation Outline

• Motivation – CCSI² Toolset Development and Implementation.
• Overview of FOQUS Software.
• Overview of FOQUS Capabilities.
• Software Management Strategy.
• CCSI² Toolset and FOQUS for Carbon Capture Applications.
 – Comprehensive analysis of CCS systems.
 – Point source capture economic optimization.
 – Industrial carbon capture (flue gas from cement plant).
 – Support to pilot-scale testing campaigns – maximize learning with targeted experiments.
• CCSI² Toolset Remarks.
Motivation – CCSI² Toolset

CCSI² main goal: To accelerate the scale-up and commercial deployment of carbon capture technologies for industries.

Path toward achieving it: Leverage a comprehensive suite of tools and models for thorough analysis, scale-up, and optimization of carbon capture systems.

CCSI² Modeling and Optimization Activities
- Economic optimization of carbon capture systems.
- Modeling of new materials and capture processes (solvents, sorbents, membranes, etc.).
- Process modeling and technoeconomic analysis of hybrid and flexible carbon capture systems.
- Pilot-scale capture systems testing.

Main Challenges
- Composite models may be required to represent the overall system.
- Complex models – simulations, optimization can take a long time to converge.
- Advanced capabilities are required for comprehensive pilot system testing – design of experiments.
- System variables indexed by space and/or time.

Solution
- The **CCSI² toolset** contains different carbon capture models and computational tools capable of addressing these challenges.
- **FOQUS is the central tool.**
Overview of FOQUS Software

Core open-source computational tool within the CCSI-Toolset

Advanced Process Simulators and Modeling Environments

- A+ PROMS
- IDAES
- PYOMO
- MATLAB

Comprehensive Analysis of Process Systems

- Uncertainty Quantification.
- Simulation-Based and Hybrid Optimization.
- Optimization Under Uncertainty.
- Sequential Design of Experiments.
- Surrogate Modeling.

Support development and deployment of carbon capture technologies.
Features:
• Provides a platform to interface with, connect, and simulate different types of models (Python, Aspen, MATLAB etc.).

Value:
• Ability to interface with:
 – Advanced process simulators (Aspen Plus, ACM, gPROMS).
 – Microsoft Excel spreadsheets.
 – Python and MATLAB models.
 – Machine Learning and Artificial Intelligence models (TensorFlow Keras, DeeperFluids).
• Ability to set up and simulate composite models.
• Foundation for implementing other FOQUS capabilities.
Uncertainty Quantification (UQ)

Features:

• Automated Framework for Multiple Simulation Runs

<table>
<thead>
<tr>
<th>Ensemble</th>
<th>Run Status</th>
<th>Setup</th>
<th>Launch</th>
<th>Analyze</th>
<th>Descriptor</th>
<th>Turbine Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1000 / 1000</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Local</td>
</tr>
</tbody>
</table>

• Data Analysis and Stochastic Parameter Estimation

Visualization

Parameter Screening

Uncertainty Analysis

Bayesian Inference

Value:

• Wide range of data analysis options—enables sensitivity analyses, quantification of model form, and parametric uncertainty.
• Bayesian inference—incorporates experimental data for reducing model parameter uncertainties.
Surrogate Modeling

Features:
- Interfaces with external tools—ALAMO, ACOSSO, BSS-ANOVA—for surrogate model (SM) development.
- Training data, variables of interest, and methods for the SM can be selected by the user.

Value:
- Simplified representation of advanced simulator models saves simulation and optimization time.
- Surrogate model plugins are created for:
 - Validation against test data.
 - Implementation in flowsheet simulation.
Optimization

Features:
- Implementation of deterministic optimization based on the FOQUS flowsheet.
- Provides an interface with derivative free optimizers (BFGS, NLOpt library, SnobFit, OptCMA, SLSQP).
- Includes a hybrid simulation-based and mathematical optimizer.
- Users can select decision variables and specify the objective function, inequality constraints, and solver.

Value:
- Flexibility to select from a wide range of optimizers depending on model complexity and expected solution time.

\[
\begin{align*}
\min_{\bar{x}} \quad & f(\bar{x}) \\
\text{s.t.} \quad & \bar{x}^L \leq \bar{x} \leq \bar{x}^U \\
& h(\bar{x}) = 0 \\
& g(\bar{x}) \leq 0
\end{align*}
\]

- $f(\bar{x})$ is the objective function
- \bar{x}^L and \bar{x}^U are the lower and upper bounds of the decision variables, respectively.
- $h(\bar{x})$ denotes equality constraints (e.g., heat and material balance in process models).
- $g(\bar{x})$ denotes inequality constraints for key output variables (e.g., product quality, gas emissions, other performance indicators in process models).

- Provides an interface with derivative free optimizers (BFGS, NLOpt library, SnobFit, OptCMA, SLSQP).
- Includes a hybrid simulation-based and mathematical optimizer.
- Users can select decision variables and specify the objective function, inequality constraints, and solver.
Features:
• Stochastic single- and two-stage optimization formulations are supported.

Single stage (without recourse)
\[
\min_{z_1} \phi_{z_3, z_4} [F(z_1, z_3, z_4)]
\]

Two stage (with recourse)
\[
\min_{z_1, z_3, z_4} \phi_{z_3, z_4} [\min_{z_2} F(z_1, z_2, z_3, z_4)]
\]

- \(z_1\): Set of design/decision variables.
- \(z_2\): Set of recourse/operating variables.
- \(z_3\): Set of discrete uncertain variables.
- \(z_4\): Set of continuous uncertain variables.
- \(F\): Simulation Model.

\(\Phi\): Statistical metric for the objective function.

Value:
• Produces optimal solutions that rigorously account for operation and epistemic uncertainty.
• Gives a realistic optimum point for models containing high-effect uncertainties.
Sequential Design of Experiments

Features:
- Generates uniform, non-uniform, and input response space filling designs.
- Robust Optimality-Based Design of Experiments.
- Graphical tools for design evaluation and comparison.
- Design ordering algorithm.

Value:
- Maximizes learning through a systematic and concise set of experiments.
- Extracts maximum information in pilot testing with fixed budget of resources.
- Enables uncertainty reduction of process models through experimental data collection.
- Supports different data collection objectives.
Amazon Web Services is used to run flowsheet simulations remotely.

Advantage:
Saves time while running multiple simulations (UQ ensemble) and instances of optimization problems.

Solution time improvement analysis:

- Ethanol + CO₂ mixture (50 %)
- Inlet Flow = 100 kg/hr
- Inlet T, P = 25°C, 100 bar
- FLASH P= 1 to 10 bar
- UQ Ensemble = Latin Hypercube

Reference:
Software Management Strategy

Base Code Maintenance and Release Management
• Open-source collaboration and contribution from different software developers.
• Rigorous use of software development tools (Git and GitHub).
• Continuous Integration: automated tests, coverage, static analysis, coding standards.
• Regular (quarterly) release schedule.

Communication, Feedback from Tech Team, Stakeholders, and Users
• Outreach and support of our users and stakeholders and understanding their requirements and expectations to drive fixes, improvements, and new capabilities.
• Annual stakeholder meetings: highlight new capabilities and applications.
• User experience: improving the FOQUS GUI usability via user case studies.
Applications of FOQUS in CCSI²

FOQUS – Central tool to support and implement various R&D projects.

• Comprehensive technical analysis and optimization of various carbon capture systems:
 – Solvent.
 – Sorbent.
 – Membrane.
 – Hybrid.

• Technoeconomic evaluation and optimization of integrated carbon capture systems:
 – Supercritical pulverized coal power plant (SCPC).
 – Natural gas-fired power plant (NGCC).
 – Cement production plant.

• Validation and improvement of carbon capture models based on pilot plant test campaigns.

Discussed Further…
Comprehensive Analysis of Carbon Capture Systems

Model Scale: ~ 0.5 Mwe.
Property Method: ELECNRTL.

Input variables of interest:
1. CO₂ Lean Loading.
2. Lean Solvent Flowrate.
3. Monoethanolamine (MEA) concentration in lean solvent.
4. Stripper pressure.
5. Flue gas flowrate.
6. Flue gas CO₂ concentration.

Output variables of interest:
1. CO₂ Capture Rate (%).
2. Reboiler Duty.
3. Specific Reboiler Duty (SRD).

Work done:
- Set up the model in FOQUS flowsheet.
- Process model validation with National Carbon Capture Center (NCCC) pilot plant data.
- Parameter screening and sensitivity study.
- Process optimization for minimizing SRD at 90% CO₂ capture rate.

Accomplishments:
- The MEA carbon capture model was successfully validated with plant data.
- The cause-effect relationship between the input and output parameters was clearly established.
- The minimum value of SRD was found to be ~ 3.47 MJ/kg CO₂ at 90% CO₂ capture rate.

Figure adapted from: Development of a framework for sequential Bayesian design of experiments: Application to a pilot-scale solvent-based CO₂ capture process Morgan et al., Appl. Energy, 2020, 262, 114533
Optimized an integrated natural gas combined cycle power plant with a solvent-based carbon capture system. Study performed for economic evaluation of a new solvent (EEMPA) developed by PNNL.

Work done:

• Set up the required model in FOQUS flowsheet.

• Simulation-based optimization using NLopt DFO solver.

\[
\begin{align*}
\min_{\bar{x}} f(\bar{x}) \\
\text{s.t.} \\
\bar{x}_L &\leq \bar{x} \leq \bar{x}_U \\
h(\bar{x}) &= 0 \\
g(\bar{x}) &\leq 0
\end{align*}
\]

- \(f(\bar{x}) \) is the Levelized Cost of Electricity (LCOE) in $/MW-hr.
- \(h(\bar{x}) \) denotes constraints directly included in Aspen model.
- \(g(\bar{x}) \) is used to constrain maximum column flooding to 80%.

Accomplishments:

✓ Determined the minimum LCOE and optimum design of absorber and regenerator in the capture system.

Ongoing work: Process modeling and optimization improvements.

EEMPA: N-[2-ethoxyethyl]-3-morpholinopropan-1-amine

PNNL: Pacific Northwest National Laboratory

References for economic model:
Analysis and Optimization of Industrial Capture Systems

Optimized integration of MEA solvent-based capture system with cement production plant.

Work done:
• Set up the integrated model in FOQUS flowsheet

- **Feed Compositions**
 - **Inputs:** Cement raw material quality.
 - **Output:** Cement raw material composition.

- **MATLAB Model – Cement Kiln**
 - **Inputs:** Cement raw material composition.
 - **Output:** Kiln heat duty and temperature.

- **Natural Gas Combustion Aspen Model**
 - **Inputs:** Kiln heat duty and temperature, cement raw material composition.
 - **Output:** Flue gas flowrate and composition.

- **MEA Carbon Capture System Aspen Model**
 - **Inputs:** Flue gas details, capture system design, operating conditions.
 - **Output:** Stripper reboiler duty.

- **UQ module:** Implemented parameter screening and sensitivity analysis of the model.
- **Optimization module:** Implemented process optimization to minimize specific reboiler duty associated with the capture system.

Accomplishments:
- Successfully demonstrated a detailed process analysis of the integrated model.
- Achieved a minimum specific reboiler duty in the range of 3.18 to 3.25 MJ/kg CO₂ at a 90% CO₂ capture rate.
National Carbon Capture Center (NCCC)

0.5 MWe test facility
Wilsonville, Alabama

Collaborated with CCSI² on aqueous MEA test campaigns in 2014 and 2017.

Technology Centre Mongstad (TCM)

12 MWe test facility
Mongstad, Norway

Collaborated with CCSI² on aqueous MEA test campaign in 2018.

Ongoing test campaigns for novel CO₂ capture technologies in collaboration with commercial developers.

Test Campaign Phases

Phase 1
Use space-filling design for evaluating quality of prediction of existing model.

Phase 2
Determine input combinations for testing based on economic objective.

Phase 3
Determine input combinations to minimize the maximum model prediction variance in the design space.

Phases 4–5
Minimize solvent regeneration energy requirement.

Accomplishments

✓ Maximized learning from pilot plant testing within the allowable budget and schedule.

✓ Model was improved through the refinement of mass transfer and interfacial area parameters.

✓ Average reduction of ~ 58% in the uncertainty of CO₂ capture percentage predicted by the model.
CCSI² Toolset Remarks

• FOQUS facilitates interfacing with advanced process simulation platforms.
• Enables advanced analysis of complex carbon capture processes.
 – Uncertainty Quantification, Optimization, Optimization Under Uncertainty, Surrogate Modeling, and Sequential Design of Experiments.
• Demonstrates comprehensive analysis of carbon capture systems integrated with various point sources.
 – SCPC, NGCC power plants, and cement plant with carbon capture.
• Enables techno-economic analysis and evaluation of novel technologies and materials to accelerate technology commercialization.

Ongoing development work:
• Technical enhancements of the interface with machine learning and artificial intelligence models.
• Improvements to the cloud computing capability.
• Sequential Design of Experiments – new capabilities and enhancements.
Further Information

CCSI² Additional Information
https://www.acceleratecarboncapture.org/

CCSI² Toolset (FOQUS framework + individual models) Downloads
https://github.com/CCSI-Toolset

FOQUS Installation Instructions and Reference Manual
https://foqus.readthedocs.io/en/latest/

FOQUS Video Tutorials
https://www.youtube.com/channel/UCBVjFnxrsWpNlcnDvh0_GzQ?app=desktop
We graciously acknowledge funding from the U.S. Department of Energy, Office of Fossil Energy and Carbon Management through the Carbon Capture Program.
 DISCLAIMER

This project was funded by the United States Department of Energy, National Energy Technology Laboratory, in part, through a site support contract. Neither the United States Government nor any agency thereof, nor any of their employees, nor the support contractor, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
For more information
https://www.acceleratencarboncapture.org/

anuja.deshpande@netl.doe.gov