LCA Tools Available at NETL

Solutions for Today | Options for Tomorrow

Matt Jamieson¹, Derrick Carlson², Sheikh Moni², Michael Whiston², Timothy J. Skone¹ ¹ National Energy Technology Laboratory ² NETL support contractor

2022 Annual Carbon Management Review Meeting Aug. 15–19, 2022

Agenda

- Power Plant Flexible Model (PPFM).
- Electricity LCI / Grid Mix Explorer.
- Upstream dashboard.
- Upcoming updated saline storage LCA Model.
- DOE Direct Air Capture (DAC) guidance.
- DAC guidance/toolkit for development this year.
- Biomass profiles added to the CO2U guidance database.
- Bioenergy with Carbon Capture and Storage (BECCS) screening tool.
- Upcoming work.

Spreadsheet model for

- Pulverized coal.
- Circulating fluidized bed power plants.
- Cooling types.
- Emissions control.
- Reduced-order model allowing change of coal characteristics and configuration of pollution control equipment.
- Emissions limited to those available in NETL techno-economic assessments.
 - CO_2 , SO_2 , Hg, NO_X , particulate matter (PM).

https://netl.doe.gov/research/energy-analysis/searchpublications/vuedetails?id=785

Foodstock (Cost/Biomass only)				Air constation unit (our firing) (Cost/M	tiomacc only!			
Peedstock (Coal/Biomass only)			1	Air separation unit (oxy-rining) (Coal/Biomass only)				
Sub bituminous Coal	100%			Status		0.00,1.00		
Lizzite Cost	076							
Hudwid Doolar	0%			Blast				
Switcherass	0%	Total: 100%		Plant Type		1 - Subcritcal Dul	herized Coal (BC) 2 - 5	
Core Stower	0/4			Franc Type	-	Coal (SCPC) 3 - Ultra-supercritical Circulating Fluidized Bed (CFB) 5 - 1		
Eorest Basidua	0%							
Outom Coal	0/4					Circulating Plana	- Solid Oxide Evel Cell	
Torrefied biomass	0.0	0.011.00		SOLC Scenario	1.4	Conventional eas	ifier w/ natural eas ini	
Biomass target moisture level	chi.	Range: 0 to 00%		Thermal input (HHV)	1351	MA*	mer wy natorar gas mj	
NOv controls	0.00	hange. 0 to con	_	memaninpac (mrv)	4.60	MMbbu/br	1 350 672 kW/	
Selective Catabric Reduction	1	0.0ff.1.0n	1	SOx controls (Coal only)	4,007		APPROVATE NTT	
SCR efficiency	83%	Default: 86%		Wet EGD	-	0.01.1.00		
Jen ennormy	00.0	Delanti dore	-	S0x removal efficiency	989	molar percent. De	efault 98%	
Fly ash and particulate matter con	trols (Coal	(Biomass only)		Source in other criticity		non percent, or	Chever 2010	
Fabric Filter	1	0 - Off. 1 - On	1	Dry FGD		0 - Off. 1 - On		
Ash removal efficiency	99.8%	Default: 99.8%		SOx removal efficiency	0%	molar percent. De	efault 93%	
Electrostatic Precipitator	0	0 - Off. 1 - On			()		
Ash removal efficiency	0.0%	Default: 99%		In-bed limestone injection	(0 - Off. 1 - On (to	be used only with CFB	
				SOx removal efficiency	05	molar percent, Default: 94%		
Carbon dioxide capture								
Status	0	0 - Off, 1 - On	1	Plant cooling				
If ASU is off, CO2 capture is amine	-based.			Wet cooling tower/Hybrid Condenser	1	0 - Off, 1 - On		
Capture bypass 0%		Default: 0%			0%	Percentage Air-C	ooled Condenser (Def	
Mercury control (Coal/Biomass on	nly)			Once-through cooling	(0 - Off, 1 - On		
Filter/ESP co-benefit cap. Rate	90.2%	Default: 70.2%	1	Allowable temperature increase	20	PF, default 60%F		
Wet FGD co-benefit cap. Rate	70.2%	Default: 70.2%						
Activated Carbon Injection	1	Default: 0		Combined Heat and Power	(0 - Off, 1 - On	0 MW sent to CHP	
				(coal and biomass only)	0.0%	Percent of steam	N/A	
				Power Plant Capacity Factor	0.85	Capacity factor us	sed for yearly operation	
				Municipal Water Usage	nicipal Water Usage 50% % water withdrawn from municip		wn from municipal sou	
				Ground Water Percent	100%	0% % of remaining water withdrawn from		
Summary Sheet	Elow Chart	NGCC Flow	SOEC flow	NEL inventory Mass balances Ga	aBi opeol CA pamer	GaBi cheet	oneol CA Coos	

PPFM Uses

Co-fire biomass vs. CO₂ emissions and net plant power

- PPFM intended as a tool to quickly assess changes in equipment or feedstock.
- Example: Can relatively quickly assess impacts of co-firing varying amounts of biomass while maintaining sulfur emissions.
 - 97.6% to 98% removal rate for SO_2 (Wet Flue Gas Desulfurization) at 0.327 kg SO_2/MWh net.

Moving Beyond GHGs, CAPs, and Water Use

- **Past focus:** LCAs have been performed on greenhouse gases (GHGs), criteria air pollutants (CAPs), and water use.
- **Broadening analysis:** Expanding inventory across all NETL models to support broader analyses; Impact analysis EPA TRACI 2.1.
- **Motivation:** As an input to other models (i.e., CO₂-enhanced oil recovery, CO₂-EOR); PPFM emissions inventory needed to be expanded.

J.S. DEPARTMENT OF

The Electricity Baseline

A complete inventory of U.S. power consumption in 2016

• What is the electricity baseline?

- Open-source life-cycle inventory data.
- Formatted for the Federal LCA Commons.
- Based on publicly accessible data sources.
- Designed for automated data processing.

• How is the baseline used?

• Historical, current, and anticipated environmental footprint of U.S. electricity.

Goals

- High quality data for technology evaluation
- Assessment of regional impacts/benefits
- Consistent national baseline

Objectives

- Complete inventory for U.S. power consumption in 2016
- Open-source data
- Transparent modeling approach
- Coordination with EPA and DOE

The Electricity Baseline

A complete inventory of U.S. power consumption in 2016

Where can the baseline be found?

Model Framework Summary

Goals

- High-quality data for technology evaluation.
- Assessment of regional impacts/benefits.
- Consistent national baseline.

Objectives

- Complete inventory for U.S. power consumption in 2016.
- Open-source data.
- Transparent modeling approach.
- Coordination with EPA and DOE.

>7,000 Generation Facilities

> 68 Balancing Authorities

10 FERC Market Regions

Upstream Dashboard

Raw Material Acquisition (RMA)					
ide RMA	On	Include RMA 2"	Off		
Process List	Illinois No. 6 Coal	RMA Process List	Not Set		
eters	Value	Parameters	Value		
ie Methane (sof/ton)	173	Not Set	Alot Set		
e Capture (%)	0	Not Set	Not Set		
		Not Set	Not Set		
		No.Co.	N . O .		
		Norder	101381		

Raw Material Transport (RMT)

Include RMT	On
Num of Transp. Mode	4
RMA Suggested RMT	

Transportation Mode**	Unit	Value
Petroleum Pipeline	mi	394.6
Petroleum Water Carrier	mi, one way	4309
Petroleum Tanker Truck	mi, one way	2.7
Petroleum Rail	mi, one way	1.2

- **Purpose:** To provide cradle-togate inventories for common power plant feedstocks with Monte Carlo functionality.
- Raw material acquisition and transport customizability: Limited parameterization is provided to customize the feedstocks (e.g., coal mine methane, biomass yield rate, and transport distances) and energy conversion facility.

Upstream Dashboard

Total Greenhouse Gas Equivalents (CO2 equivalent)

Results

- Emissions inventory table and GHG equivalents.
- Graph of GHG equivalents.
- Monte Carlo simulation.
- Criteria Air Pollutants and water use.

Upcoming Saline Storage LCA Model

• Gate-to-grave boundary, 100-yr period.

- Site preparation.
- Well construction.
- CO₂ storage operations.
- Site monitoring.
- Covers all 228 identified U.S. saline aquifer formations.
 - Vary power supply types and water management strategies.
- With and without land reversion options added.
- Updated Excel and openLCA models.
- TRACI 2.1, IPCC AR5 impact method.

- Brine management.
- Well closure.
- Land use.

Upcoming Saline Storage LCA Model

1.6E-03

Global Warming Potential (GWP), 20-yr impacts

Parameters:

- Fuel use rates.
- Combustion emissions factors.
- Non-combustion use factors.
- Energy use.
- Saline aquifer operations.

Upcoming Saline Storage LCA Model

Findings

- The injectability of a formation has a large influence on the magnitude of impacts.
- Scenarios.
 - Grid electricity has higher overall impacts on freshwater consumption and PM.
 - Diesel has higher overall impacts on acidification, 100-year GWP, ozone depletion, and smog.
 - Natural gas and diesel show high relative impacts on eutrophication and 20year GWP.
- Natural gas for site operations and brine management scenarios shows the best environmental results.
- CO_2 and brine leakage are significant drivers of impact uncertainty.

Direct Air Capture (DAC)

Objective: Expand number of DAC system configurations – current industry configurations

- Solvent Sorbent Auxiliary * < 0.01 < 0.01 Compressor (CO₂ Product) 0.09 0.09 Air Separation Unit 0.05 Slaker 0.02 Calciner (Natural Gas) < 0.01 Pellet Reactor 0.02 Air Contactor 0.05 0.13 Natural Gas (Upstream) 0.02 0.01 Calcium Carbonate (Upstream) < 0.01 Potassium Hydroxide (Upstream) < 0.01 Water Mass of Atmospheric CO₂ ** -0.65 -0.71 Total -0.39 -0.48
- * Auxiliary loads consist of circulating water pumps, cooling tower fans, CO₂ capture and removal auxiliaries (for natural gas boiler), CO₂ compression (for natural gas boiler), feedwater pumps, ground water pumps, selective catalytic reduction (attached to the natural gas boiler for flue gas treatment), and miscellaneous plant balance.
- ** The Mass of Atmospheric CO₂ is less than 1 kg because a portion of the kg of CO₂ product is captured from natural gas combustion onsite and not removed from the atmosphere.

- Manuscript in internal review.
- Updates/additional profiles (Infinitree, Skytree, Climeworks).

DAC-to-Aquifer Storage

Provides negative emissions under all modeled grid intensities.

DAC-to-EOR

U.S. DEPARTMENT OF

NATIONAL ENERGY TECHNOLOGY LABORATORY

DAC-to-EOR provides a scenario for carbon reducing technologies but not negative emissions technologies.

DOE FECM Best Practice Document – Goals

- Foster consistency of LCA of Direct Air Capture with Storage (DACS) systems to enable more complete understanding of potential impacts of carbon dioxide removal.
- Assess sensitivity and uncertainty in results to provide confidence in the study outcomes and potential risk envelopes for technology performance.
- Understand potential tradeoffs and co-benefits of DACS systems.
- Leverage best practices from the LCA research and practitioner community.

.S. DEPARTMENT OF

BECCS Profiles for CO2U Database

- New grid mix and biomass roll-ups are added to CO2U database.
 - 2020 U.S. grid mix.
 - 2050 U.S. grid mix.
 - Fossil power w/ CCS.
 - Renewables.
 - Saline Aquifer Transport and Storage.
- Metadata is included.
 - Inventory sources, date of representativeness, disclaimer.
- CO2U Toolkit change log has been updated.
 - Worked with web development team and posted changes.

- Southern yellow pine.
- Hybrid poplar.
- Switchgrass.
- Corn stover.

BECCS Profiles for CO2U Database

GWP, 100-yr impacts – Grid

BECCS Profiles for CO2U Database

GWP, 100-yr impacts – Biomass

BECCS Screening Tool

Global Warming Potential [100 yr] - TRACI 2.1 (NETL) (kg CO2e per MWh)									
Impact Category	g Global Warming Potential [100 yr] - TRACI 2.1 (NETL)		Result 1	Result 2					
	Note: Do not adjust areas in gray		7.9E+02	-1.2E+03	kg CO2e				
	Cells in white can be adjusted				per MWh				
	Areas in orange are under development in 2021								
	Areas in blue are dropdown menus								
Inputs	BECCS Scenario 1		BECCS Scenario 2	Units	Scaling Factor	Acceptable Range	Default Values	Difference 1	Difference 2
Biomass Type	Hybrid Poplar		Hybrid Poplar						
Coal Type	Subbitiminous		Subbitiminous						
Processing	Pelletization and Dr	ying	Torrefaction						
Moisture Content	10%		5%	%	10%	0%-100%	10%	0%	5%
Coal Transportation	on 320		600	km	0.006039743	0-3,500	321.868	-1.868	278.132
Harvest Residue	50		50	% of yield	-0.02784	25-100	50	0	0
Biomass Yield	6214		6214	kg per acre-year	-0.000767461	3,000-12,500	6214	0	0
Coal Mine Methane	e 0.002696		0.002696	cubic meters per kg coal	9363.501484	0.002-0.02	0.002696	0	0
Biomass Transport	ansport 1.00x		1.00x	radius change - tied to yield	0.188	0.71x-1.44x	1	0	0
Biomass Mass %	20		100	%			35	-15	65
Carbon Capture	no		yes				yes		
Disposition	Saline Aquifer		EOR				Saline Aquifer		
1.0E+03		1.5E+03							
	7.9E+02		1.2E+03	1.2	E+03				
12.1		12				1.0E+03	1.1E+03		
Q 5.0E+02		Q 1.0E+03 7.9	E+02	75.00					
-[Г Ц	0.7E+02			5.2E+02			
D yr]		5€ 5.0E+02 —					+02 3.8E+02	3.6E+()2
0.0E+00	1.4E+02 8.9E+01 a to a t					2.0E+02 1.3E+02			
)2e	BECCS Scenario 1 BECCS Scenario 2	00+30.0 5 H		1.4E+01 2.4E+01	2.3E+01	3.1E+01			
a CC	The critic critic critic and the second for the for the formed of the fo						will is		
≞ ≚ -5.0E+02 — జాం		a x cenari	cenari aura	The other. MAL MACL Schole	So then	W. So Chill	SUP CALL R	al call call	astile . Gwl
IETI		LE I -5.0E+00	65° No	Ger Qu	50181	دمي	SUDY	NG OXY mal	. ACA
R € > _1.05±02		× v v						wentic	2-
		-1.0E+03						-alcol.	
Glo	1 25.02	gl						de co-	
-1.5E+03	-1.20+05	-1.5E+03	-1.2E+03					57	

Upcoming Work – BECCS Retrofit

Existing Sub-Critical Pulverized Coal Power Plants

- **Background:** A 2012 NETL study showed that retrofit of an existing plant to co-fire biomass (10%) increased the cost of electricity by 31%.⁴
- **Updating the model:** To provide an option for conversion of up to 100% biomass plus the addition of CCS.
 - Systems smaller than the 650 MW greenfield plant will be explored as existing plants may be smaller, biomass has a lower heating value than coal, and parasitic loads from the capture system will lower net output.
 - Drax Power Station in the United Kingdom has converted four of its six coal units to operate on biomass.⁵

4. Skone, Timothy J., et al. Role of alternative energy sources: pulverized coal and biomass co-firing technology assessment. No. NETL/DOE-2012/1537. National Energy Technology Laboratory (NETL), Pittsburgh, PA, Morgantown, WV, and Albany, OR (United States), 2012.

5. "Drax closer to coal-free future with fourth biomass unit conversion" Drax Press Release. August 20, 2018. https://www.drax.com/press_release/drax-closer-coal-free-future-fourth-biomass-unit-conversion/

Upcoming Work – Circulating Fluidized Bed

Ongoing Analysis of 100 MW CFB with Hybrid Poplar and Forest Residue

- Circulating fluidized bed (CFB) technologies are favored for combustion and gasification processes.
 - Globally, CFBs make up 18% of biomass co-firing.¹
 - CFBs fueled by 100% biomass exist but are not prevalent.

• Key characteristics of CFBs include:

- Load flexibility and high heat transfer rates.
- Fuel flexibility, ideal for handling high moisture and ash content of low-rank coals and biomass.²
- Uniform temperature throughout gasifier (850–950°C).³
- Low NOx emissions due to low temperatures.
- 1. (Sugiyono, 2022), <u>https://iopscience.iop.org/article/10.1088/1755-1315/963/1/012007</u>
- 2. (NETL website), https://netl.doe.gov/research/coal/energy-systems/gasification/gasifipedia/fluidizedbed
- (Vakkilainen, 2017), <u>http://dx.doi.org/10.1016/B978-0-12-804389-9.00010-1</u>

Exhibit: Schematic of a CFB²

Contact Information

Timothy J. Skone, P.E. Senior Environmental Engineer • U.S. DOE, NETL (412) 386-4495 • timothy.skone@netl.doe.gov

Derrick Carlson Senior Engineer • NETL Support Contractor derrick.carlson@netl.doe.gov

Michael Whiston Senior Engineer • NETL Support Contractor michael.whiston@netl.doe.gov

.S. DEPARTMENT OF

NETL Resources

VISIT US AT: www.NETL.DOE.gov

@NETL_DOE

6

@National Energy Technology Laboratory

Timothy J. Skone, P.E. Senior Environmental Engineer • U.S. DOE, NETL (412) 386-4495 • *timothy.skone@netl.doe.gov*

Derrick Carlson Senior Engineer • NETL Support Contractor *derrick.carlson@netl.doe.gov*

Disclaimer

This project was funded by the United States Department of Energy, National Energy Technology Laboratory, in part, through a site support contract. Neither the United States Government nor any agency thereof, nor any of their employees, nor the support contractor, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

