LCA Tools Available at NETL

Solutions for Today | Options for Tomorrow

Matt Jamieson¹, Derrick Carlson², Sheikh Moni², Michael Whiston², Timothy J. Skone¹
¹ National Energy Technology Laboratory
² NETL support contractor

2022 Annual Carbon Management Review Meeting
Aug. 15–19, 2022
Agenda

- Power Plant Flexible Model (PPFM).
- Electricity LCI / Grid Mix Explorer.
- Upstream dashboard.
- Upcoming updated saline storage LCA Model.
- DOE Direct Air Capture (DAC) guidance.
- DAC guidance/toolkit for development this year.
- Biomass profiles added to the CO2U guidance database.
- Bioenergy with Carbon Capture and Storage (BECCS) screening tool.
- Upcoming work.
About Power Plant Flexible Model

- Spreadsheet model for
 - Pulverized coal.
 - Circulating fluidized bed power plants.
 - Cooling types.
 - Emissions control.

- Reduced-order model allowing change of coal characteristics and configuration of pollution control equipment.

- Emissions limited to those available in NETL techno-economic assessments.
 - \(\text{CO}_2 \), \(\text{SO}_2 \), Hg, \(\text{NO}_x \), particulate matter (PM).

https://netl.doe.gov/research/energy-analysis/search-publications/vuedetails?id=785
PPFM Uses
Co-fire biomass vs. CO₂ emissions and net plant power

• PPFM intended as a tool to quickly assess changes in equipment or feedstock.

• Example: Can relatively quickly assess impacts of co-firing varying amounts of biomass while maintaining sulfur emissions.
 • 97.6% to 98% removal rate for SO₂ (Wet Flue Gas Desulfurization) at 0.327 kg SO₂/MWh net.
Moving Beyond GHGs, CAPs, and Water Use

- **Past focus:** LCAs have been performed on greenhouse gases (GHGs), criteria air pollutants (CAPs), and water use.

- **Broadening analysis:** Expanding inventory across all NETL models to support broader analyses; Impact analysis - EPA TRACI 2.1.

- **Motivation:** As an input to other models (i.e., CO$_2$-enhanced oil recovery, CO$_2$-EOR); PPFM emissions inventory needed to be expanded.
The Electricity Baseline
A complete inventory of U.S. power consumption in 2016

• What is the electricity baseline?
 • Open-source life-cycle inventory data.
 • Formatted for the Federal LCA Commons.
 • Based on publicly accessible data sources.
 • Designed for automated data processing.

• How is the baseline used?
 • Historical, current, and anticipated environmental footprint of U.S. electricity.
The Electricity Baseline
A complete inventory of U.S. power consumption in 2016

Where can the baseline be found?

LCA Practitioners
✓ JSON-LD and ILCD exports
✓ Choose selected region and export full product system to openLCA for connection with rest of system
lcacommons.gov/lca-collaboration

Energy and Env Analysts
✓ Create customized technology mix and inventory
✓ Explore inventory and TRACI impacts for selected region
✓ Add advanced technologies
netl.doe.gov/LCA

Researchers & Developers
✓ Complete transparency into inventory dev
✓ Flexibility to adjust model parameters
✓ Integration into other frameworks
github.com/USEPA/ElectricityLCI
Model Framework Summary

Goals
• High-quality data for technology evaluation.
• Assessment of regional impacts/benefits.
• Consistent national baseline.

Objectives
• Complete inventory for U.S. power consumption in 2016.
• Open-source data.
• Transparent modeling approach.
• Coordination with EPA and DOE.
Purpose: To provide cradle-to-gate inventories for common power plant feedstocks with Monte Carlo functionality.

Raw material acquisition and transport customizability: Limited parameterization is provided to customize the feedstocks (e.g., coal mine methane, biomass yield rate, and transport distances) and energy conversion facility.
Upstream Dashboard

Results

- Emissions inventory table and GHG equivalents.
- Graph of GHG equivalents.
- Monte Carlo simulation.
- Criteria Air Pollutants and water use.
Upcoming Saline Storage LCA Model

• Gate-to-grave boundary, 100-yr period.
 • Site preparation.
 • Well construction.
 • CO₂ storage operations.
 • Site monitoring.
 • Brine management.
 • Well closure.
 • Land use.

• Covers all 228 identified U.S. saline aquifer formations.
 • Vary power supply types and water management strategies.

• With and without land reversion options added.

• Updated Excel and openLCA models.

• TRACI 2.1, IPCC AR5 impact method.
Upcoming Saline Storage LCA Model

Global Warming Potential (GWP), 20-yr impacts

Parameters:

• Fuel use rates.
• Combustion emissions factors.
• Non-combustion use factors.
• Energy use.
• Saline aquifer operations.
Upcoming Saline Storage LCA Model

Findings

• The injectability of a formation has a large influence on the magnitude of impacts.

• Scenarios.
 • Grid electricity has higher overall impacts on freshwater consumption and PM.
 • Diesel has higher overall impacts on acidification, 100-year GWP, ozone depletion, and smog.
 • Natural gas and diesel show high relative impacts on eutrophication and 20-year GWP.

• Natural gas for site operations and brine management scenarios shows the best environmental results.

• CO₂ and brine leakage are significant drivers of impact uncertainty.
Direct Air Capture (DAC)

Objective: Expand number of DAC system configurations – current industry configurations

- Manuscript in internal review.
- Updates/additional profiles (Infinitree, Skytree, Climeworks).

Life Cycle GHG Intensity (AR5, GWP 100-yr) (kg CO2e/kg CO2 Captured at DAC Facility)

Solvent: -0.39
Sorbent: -0.48

<table>
<thead>
<tr>
<th>Solvent</th>
<th>Sorbent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auxiliary *</td>
<td><0.01</td>
</tr>
<tr>
<td>Compressor (CO₂ Product)</td>
<td>0.09</td>
</tr>
<tr>
<td>Air Separation Unit</td>
<td>0.05</td>
</tr>
<tr>
<td>Slaker</td>
<td>0.02</td>
</tr>
<tr>
<td>Calciner (Natural Gas)</td>
<td><0.01</td>
</tr>
<tr>
<td>Pellet Reactor</td>
<td>0.02</td>
</tr>
<tr>
<td>Air Contactor</td>
<td>0.05</td>
</tr>
<tr>
<td>Natural Gas (Upstream)</td>
<td>0.02</td>
</tr>
<tr>
<td>Calcium Carbonate (Upstream)</td>
<td><0.01</td>
</tr>
<tr>
<td>Potassium Hydroxide (Upstream)</td>
<td><0.01</td>
</tr>
<tr>
<td>Water</td>
<td>-0.65</td>
</tr>
<tr>
<td>Mass of Atmospheric CO₂ **</td>
<td>-0.71</td>
</tr>
<tr>
<td>Total</td>
<td>-0.39</td>
</tr>
</tbody>
</table>

* Auxiliary loads consist of circulating water pumps, cooling tower fans, CO₂ capture and removal auxiliaries (for natural gas boiler), CO₂ compression (for natural gas boiler), feedwater pumps, ground water pumps, selective catalytic reduction (attached to the natural gas boiler for flue gas treatment), and miscellaneous plant balance.

** The Mass of Atmospheric CO₂ is less than 1 kg because a portion of the kg of CO₂ product is captured from natural gas combustion onsite and not removed from the atmosphere.
Provides negative emissions under all modeled grid intensities.

- DAC-to-Aquifer Storage

Graph showing Net System GHG Intensity (ARS, GWP 100) vs. Grid GHG Intensity (kg CO₂e/MWh) for various energy sources and technologies:

- 100% Renewables
- NGCC w/ CCS
- SCPC w/ CCS
- NGCC w/o CCS
- US Grid Mix
- US Fleet Average Coal

Sorbents and Solvents:

- DAC EOR
- Algae Biofuels
- Saline Aquifer
- DAC (Cradle-to-gate)
DAC-to-EOR provides a scenario for carbon reducing technologies but not negative emissions technologies.
• Foster consistency of LCA of Direct Air Capture with Storage (DACS) systems to enable more complete understanding of potential impacts of carbon dioxide removal.

• Assess sensitivity and uncertainty in results to provide confidence in the study outcomes and potential risk envelopes for technology performance.

• Understand potential tradeoffs and co-benefits of DACS systems.

• Leverage best practices from the LCA research and practitioner community.

https://www.energy.gov/fecm/best-practices-LCA-DACS
BECCS Profiles for CO2U Database

- New grid mix and biomass roll-ups are added to CO2U database.
 - 2020 U.S. grid mix.
 - 2050 U.S. grid mix.
 - Fossil power w/ CCS.
 - Renewables.
 - Saline Aquifer Transport and Storage.
 - Forest residue.
 - Southern yellow pine.
 - Hybrid poplar.
 - Switchgrass.
 - Corn stover.

- Metadata is included.
 - Inventory sources, date of representativeness, disclaimer.

- CO2U Toolkit change log has been updated.
 - Worked with web development team and posted changes.
BECCS Profiles for CO2U Database

GWP, 100-yr impacts – Grid

- Current U.S. Grid Mix: 0.14 kg CO2e/MJ electricity
- 2050 U.S. Grid Mix: 0.12 kg CO2e/MJ electricity
- Fossil Power with CCS: 0.06 kg CO2e/MJ electricity
- Renewables: 0.01 kg CO2e/MJ electricity
BECCS Profiles for CO2U Database

GWP, 100-yr impacts – Biomass

<table>
<thead>
<tr>
<th>Biomass Type</th>
<th>kg CO2e/kg biomass</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forest residue, raw</td>
<td>-0.99</td>
</tr>
<tr>
<td>Forest residue, chipped</td>
<td>-0.93</td>
</tr>
<tr>
<td>Forest residue, torrefied</td>
<td>-1.18</td>
</tr>
<tr>
<td>Hybrid poplar, raw</td>
<td>-0.79</td>
</tr>
<tr>
<td>Hybrid poplar, chipped</td>
<td>-0.74</td>
</tr>
<tr>
<td>Hybrid poplar, torrefied</td>
<td>-0.83</td>
</tr>
<tr>
<td>Southern pine, raw</td>
<td>-0.83</td>
</tr>
<tr>
<td>Southern pine, chipped</td>
<td>-0.78</td>
</tr>
<tr>
<td>Southern pine, torrefied</td>
<td>-0.90</td>
</tr>
<tr>
<td>Corn stover, raw</td>
<td>-1.04</td>
</tr>
<tr>
<td>Switchgrass, raw</td>
<td>-0.79</td>
</tr>
</tbody>
</table>
BECCS Screening Tool

Global Warming Potential (100 yr) - TRACI 2.1 (NETL) (kg CO2e per MWh)

<table>
<thead>
<tr>
<th>Impact Category</th>
<th>BECCS Scenario 1</th>
<th>BECCS Scenario 2</th>
<th>Result 1</th>
<th>Result 2</th>
<th>kg CO2e per MWh</th>
</tr>
</thead>
<tbody>
<tr>
<td>Global Warming Potential (100 yr) - TRACI 2.1 (NETL)</td>
<td></td>
<td></td>
<td>7.9E+02</td>
<td>-1.2E+03</td>
<td></td>
</tr>
</tbody>
</table>

Inputs

<table>
<thead>
<tr>
<th>Biomass Type</th>
<th>BECCS Scenario 1</th>
<th>BECCS Scenario 2</th>
<th>Units</th>
<th>Scaling Factor</th>
<th>Acceptable Range</th>
<th>Default Values</th>
<th>Difference 1</th>
<th>Difference 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hybrid Poplar</td>
<td>Hybrid Poplar</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subbituminous</td>
<td>Subbituminous</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pulpitization and Drying</td>
<td>Torrefaction</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moisture Content</td>
<td>19%</td>
<td>5%</td>
<td>km</td>
<td>0.000039743</td>
<td>0.0000767461</td>
<td>9963.501484</td>
<td>0.0020-0.02</td>
<td>0.0002906</td>
</tr>
</tbody>
</table>

Biomass Mass %	20	yes	Saline Aquifer	0.73x1.44	1	35	-15	65
Carbon Capture	no	yes	EOR					
Disposition								
Upcoming Work – BECCS Retrofit

Existing Sub-Critical Pulverized Coal Power Plants

• **Background:** A 2012 NETL study showed that retrofit of an existing plant to co-fire biomass (10%) increased the cost of electricity by 31%.⁴

• **Updating the model:** To provide an option for conversion of up to 100% biomass plus the addition of CCS.

 • Systems smaller than the 650 MW greenfield plant will be explored as existing plants may be smaller, biomass has a lower heating value than coal, and parasitic loads from the capture system will lower net output.

 • Drax Power Station in the United Kingdom has converted four of its six coal units to operate on biomass.⁵

Upcoming Work – Circulating Fluidized Bed

Ongoing Analysis of 100 MW CFB with Hybrid Poplar and Forest Residue

- Circulating fluidized bed (CFB) technologies are favored for combustion and gasification processes.
 - Globally, CFBs make up 18% of biomass co-firing.¹
 - CFBs fueled by 100% biomass exist but are not prevalent.
- Key characteristics of CFBs include:
 - Load flexibility and high heat transfer rates.
 - Fuel flexibility, ideal for handling high moisture and ash content of low-rank coals and biomass.²
 - Uniform temperature throughout gasifier (850–950°C).³
 - Low NOx emissions due to low temperatures.

2. (NETL website), https://netl.doe.gov/research/coal/energy-systems/gasification/gasifipedia/fluidizedbed
3. (Vakkilainen, 2017), http://dx.doi.org/10.1016/B978-0-12-804389-9.00010-1
Contact Information

Timothy J. Skone, P.E.
Senior Environmental Engineer • U.S. DOE, NETL
(412) 386-4495 • timothy.skone@netl.doe.gov

Derrick Carlson
Senior Engineer • NETL Support Contractor
derrick.carlson@netl.doe.gov

Michael Whiston
Senior Engineer • NETL Support Contractor
michael.whiston@netl.doe.gov

netl.doe.gov/LCA LCA@netl.doe.gov @NETL_News
Disclaimer

This project was funded by the United States Department of Energy, National Energy Technology Laboratory, in part, through a site support contract. Neither the United States Government nor any agency thereof, nor any of their employees, nor the support contractor, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.