"Project Delta"

Front-End Engineering and Design for a CO2 Capture System at Calpine's Delta Energy Center

DE-FE0032149 August 17, 2022

Andrew Awtry, Ph.D.

Principal Investigator: Project Manager: Andrew Awtry, Ph.D. Jennifer Atcheson

> U.S. Department of Energy National Energy Technology Laboratory Carbon Management Project Review Meeting August 15 through August 19, 2022

DE-FE0032149: "FEED for a CO2 Capture System at Calpine's Delta Energy Center" (Project Delta) *Project Overview*

• Project Period of Performance:

February 1, 2022 – August 31, 2023

• Funding:

Federal: \$5,811,210 Cost Share: \$1,452,803

• Objective:

Complete a FEED for a commercial-scale carbon dioxide (CO_2) capture facility retrofitted onto an existing natural gas combined cycle (NGCC) power station. The project team will design and cost a CO_2 capture facility for retrofit onto Delta Energy Center (DEC), an 857 MW facility in Calpine's fleet.

Project Delta *Project Team and Roles*

ION Clean Energy

- Award Recipient
- Technology Developer
- Process Design and Project Management

Calpine

- Host Site & Subrecipient
- Power Generation Engineering,
 Operational and Financial Expertise

Sargent and Lundy

- Capture Island Process Oversight, Engineering & Costing
- Balance of Plant Engineering & Costing
- Overall Cost Estimate Development
- Engineering Studies Lead

SIEMENS

Koch Engineered Solutions (KES)

- Gas/Liquid Contactor Vendor
- Contactor Design & Costing Support

Siemens Energy

- Compressor Technology Provider
- CO₂ Compressor Design & Costing Including Heat Integration

Kiewit

- Owners Engineer
- Document Review

TOSHIBA

Toshiba America Energy System (TAES)

- Steam Turbine OEM
- Evaluation of Steam Extraction

Deltak

- HRSG OEM
- Evaluation of Flue Gas Duct Tie-in

Sargent & Lundy

Statement of Project Objectives

Task 1 – Project Management

Task 2 – Overall Project Design Basis

- Subtask 2.1 Overall Project Design Basis
 - Overall Design Basis/Design Criteria
 - Carbon Capture System Requirements Document
- Subtask 2.2 System Design Description
 - System Design Description including BOP

Task 3 – Process Design – CO₂ Capture Island

- Subtask 3.1 Preliminary Design of the Carbon Capture Island
 - Process Flow Diagrams, Heat and Material Balance, Utility Summary, Preliminary Equipment List, a Theory of Operation, and a refined set of requirements with support from performance models and system analyses.
- Subtask 3.2 Detailed Design of the Carbon Capture Island
 - Detailed Equipment List supported by vendor data sheets, Controls Description, Emissions and Effluent List, Capture System P&IDs and an Equipment Layout Plan

Statement of Project Objectives

Task 4 – Engineering and Design

- Subtask 4.1 BOP Systems Design
 - Design work supporting Site Plan, Foundation, Ductwork, Structural Steel, Steam Turbine Tie-In, Heat Rejection System, Pipe Racks, Building/Architecture, Electrical Systems, General Arrangement Drawings and a Preliminary 3D Model
- Subtask 4.2 System Level Engineering
 - System level engineering packages including the system level Heat and Water Balances, P&ID's and resulting Equipment, Piping, Instrument and Electrical Load Lists

Task 5 – Supplemental Studies and Investigations

- Including
 - Steam and Power Sourcing Study
 - Cooling Water and Optimization Study
 - Reliability, Availability and Maintainability (RAM) Analysis
 - Hazard and Operability Review (HAZOP)
 - Constructability Review

Statement of Project Objectives

Task 6 – Cost Estimating

- Subtask 6.1 CO₂ Capture Island and BOP Capital Costs
- Subtask 6.2 Operating & Maintenance Costs
- Subtask 6.3 Overall Cost Estimate and Cost of Capture

Task 7 – Final Reporting & DOE Deliverables

- Subtask 7.1 FEED Study
- Subtask 7.2 Additional Required DOE Deliverables:
 - Life Cycle Analysis
 - Business Case Analysis
 - Techno-Economic Analysis
 - Economic Revitalization and Job Creation Outcomes Analysis
 - Environmental Justice Analysis

Project Overview *Milestones*

#	Corresponding Task	Title/Description	Target/Actual Completion Date	Verification Method
M1	1.0	DOE Kickoff Meeting	06/13/2022	Presentation Slides
M2	1.0	Updated PMP	02/28/2022	PMP Transmitted to DOE FPM
М3	2.0	Basis of Design for Project Finalized	05/31/2022	Meeting Held w/ Results Project SharePoint Site; Completion Memo to DOE
M4	3.0	Preliminary Design Review Complete	05/10/2022	Meeting Held w/ Results Project SharePoint Site; Completion Memo to DOE
M5	4.0	Critical Design Review Complete	09/13/2022	Meeting Held w/ Results Project SharePoint Site; Completion Memo to DOE
М7	5.4	HAZOP Complete	11/29/2022	HAZOP Report Completed
M8	6.0	Overall Cost Estimate and Cost of Capture	03/20/2023	Meeting Held w/ Results Project SharePoint Site; Completion Memo to DOE
М9	7.0	Front-End Engineering Design (FEED) Report	06/30/2023	Report Delivered to DOE/NETL
M10	7.0	Final DOE Report & Presentation	08/31/2023	Report Delivered to DOE/NETL

ION'S SOLVENT TECHNOLOGY

ION Technology

Proprietary Solvent-based Technology

- Liquid absorbent-based capture
- Low aqueous
- WW Patents

Reduced CAPEX & OPEX

- Smaller columns, HXs and footprint
- Lower energy requirements

Established Engineering Process

Basis of Performance

- < 1,050 Btu/lb CO₂ (2.4 MJ/kg CO₂)
 - Fast kinetics (on par or faster than MEA)
 - Working capacity (higher than MEA)
 - Low heat capacity (much lower than MEA)
- Low tendency for corrosion (much lower than MEA)

ION's CO₂ Capture Technology Development Accelerated development path leveraging existing research facilities

PROJECT DELTA – CURRENT PROJECT PROGRESS

Delta Energy Center Background

- Location:
 - Pittsburg, CA
- Facility Type:
 - 3 x 1 NGCC
 - Siemens W501F CTs
 - Deltak HRSGs
 - Toshiba ST
- Additional Site Information
 - Original proposed location of CCUS is immediately South of base plant
 - DDSD provides makeup water to base plant

ProTreat[®] Process Model *ION CO*₂ *Capture Process*

Key features of ION process compared to 'common' MEA-designed plant

- Cold-Rich By-pass
- Optimized lean rich cross exchanger (LRXC) design
- Caustic addition to DCC to act as a Polishing Scrubber
- Compressor Selection

ProTreat output provides stream tables, key performance indices, and steam, cooling and electrical duties

- Capture System Design
 - 2x 50% trains for the Capture Island
 - 2x 50% on major pieces of equipment to assist in turndown and provide some risk mitigation
 - Designed for operation at full load, and track plant load to maximum turndown
 - Designed for 95% capture of CO_2 ; resulting in upto 98% capture at turndown
 - CO_2 product at expected Capacity Factor: 2.36M tonnes of CO_2 /yr

- BOP Design
 - Steam Sourcing
 - Working with the Steam Turbine vendor to optimize and evaluate consequences of extraction at various locations
 - Heat Rejection System
 - Utilize consumptive water available from DDSD and DCC blowdown
 - Sufficient water available for fully evaporative cooling system
 - 2% Summer occurrence temperature was used for the basis for design
 - Flue Gas Tie-in
 - Working with vendor to design tie-in point and consolidate HRSG stack flows

Compressor Initially Sized

Integrally-Geared Compressor

STC-GV

(Siemens Turbo Compressor, Geared, Vertical Split

Characteristic	Range	DEC
Frame sizes	10-200	20
Volume flow (m ³ /hr)	10,000 - 800,000	51,700
Discharge pressure (bara)	Up to 200	80
Power (MW)	Up to 65 MW	14.6
Impeller size (mm)	110 - 2,000	559 - 226
Pinion speed (rpm)	Up to 35,000	11,451 - 19,220
Bull gear diameter (mm)	Up to 3,300	1,554
Number of stages	2-8	6

Unrestricted © Siemens Energy, 2022

Preliminary General Arrangement

Current Project Status

Accomplishments

- Substantial complete of Design Basis (Tracking Decision Log)
- Produced Design Criteria
- Completed the Process Design Package (PFD, HMB, Equipment List, Utility Summary)
- Completed Initial Compression Selection and Preliminary Compression Design
- Conducted Preliminary Design Review
- Generated Initial Plot Plan & performed Geotechnical Assessment
- Generated Capture system P&IDs
- Generated Overall Balances
- Laser Scan of site and initiation of 3D Model
- Kickoff of critical flaw analysis with Toshiba on Steam Extraction
- Draft reports out on the Technology Selection for the Heat Rejection system and on the Water/Wastewater Treatment Study

Current Project Status Next Steps (Q3 2022)

- Complete the Theory of Operations Document
- Finalize Design Criteria
- Issue for use:
 - Process Equipment Drawings
 - P&IDs with associated lists
 - Overall Heat and Mass Balance
 - General Arrangement Drawings
- Finalize Compression Design
- Substantial Complete of 3D model
- Civil work for site: regrading review, site work, foundations
- Complete HRSG Tie-In work with vendor
- Complete Steam Tie-in evaluation with vendor

This material is based upon work supported by the Department of Energy National Energy Technology Laboratory under cooperative award number DE-FE0032149

Disclaimer

"This presentation was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof."