Chevron natural gas carbon capture technology testing project

Cooperative Agreement No. DE-FE0031944 August 16, 2022

Mr. Scott McLemore

company

enere

Our strategy to scale CCUS

to generate higher returns and lower carbon

Advancing CCUS through investments and collaborations

Project overview

Award Period

• 10/01/2020 through 04/30/2023

Project Funding

- Total Funding: \$20,888,075.00
- Federal Funding: \$13,000,000.00
- Cost Share Funding: \$7,888,075 (Cash Contribution by Chevron)

Project Participants

- Chevron U.S.A. Inc., Prime Contractor, host site and cost share provider
 - Principal Investigator: Scott McLemore
 - Project Manager: Stan Cross
- Technology Provider: Svante, Inc.; Carbon capture technology provider
- ISBL Engineering, Procurement and Construction: Kiewit Engineering Group Inc (KEGI) and Kiewit Power Constructors (KPC)
- Program Administrator: Electricore, Inc.
- Plant Operation: Offshore Technology Services (OTS)

DOE-NETL Team

 Grants Officer: Lisa Kuzniar, Project Manager: Nicole Shamitko-Klingensmith, Contracting Specialist: Kelly Haught

Project objectives

The project will validate a transformational solid sorbent carbon capture technology at engineering scale under indicative natural gas flue gas conditions and continuous long-term operation at Chevron's Kern River oil field

- Successfully complete the design, construction, commissioning, and longterm testing of an engineering scale plant of approximately 25 tonnes per day (TPD) under steady-state conditions at varying flue gas carbon dioxide (CO₂) concentrations (~4–14%);
- Conduct a techno-economic analysis (TEA) on the VeloxoTherm[™] technology as integrated into a nominal 550 MW (net) natural gas combined cycle (NGCC) power plant;
- Conduct a comprehensive gap analysis addressing the current stage of VeloxoTherm[™] technology development for NGCC application; and
- Summarize the research, development, and demonstration requirements to close identified gaps to approach achievement of DOE's carbon capture performance goal of CO₂ capture with 95% CO₂ purity at a cost of \$30/tonne of CO₂ captured by 2030.

Kern River carbon capture plant

San Joaquin Valley, CA USA Natural gas-based flue gas testing

Understand and measure capture plant performance on boiler, NGCC and SMR feed flue gas

Skid-mounted modular design of second-of-a-kind (SOAK) capture plant

New MOF sorbent beds

95% CO₂ product purity and lower steam ratio compared to conventional solvent technology

Flue gas module

Conditioning module

Svante has a 15-year first mover advantage...

Svante carbon capture technology

Svante's technology for the separation of CO₂ from gas streams using solid state technology is comprised of a rapid cycle adsorption process using structured adsorbents (active adsorbent materials formed into a parallel passage contactor), and includes the following critical technology elements:

- 1. Proprietary adsorbent mat
- 2. Design and formation of adsorbents into structured adsorbent contactors
- 3. Design of the dynamic process cycle for performing the gas separation, structured filters with thin-film technology enable rapid cycles of <60 seconds
- 5. Machine design for carrying out the process cycle and delivering streams to and from the structured adsorbents
- 6. The overall design, integration and optimization of the entire CO₂ capture plant that goes around the machine and process cycle (items such as fans, heat exchangers, vessels, pre-treatment and post-treatment, use of electricity, steam and waste heat, cooling, management of discharge and effluents, etc..)

Project location — Kern River Oilfield

Reducing the carbon intensity of our operations through scalable demonstration projects

2.3 BBOE cumulative production 60% OOIP (3.7 BBOE)

SJVBU GHG emissions 2021

Technical approach

The project will be conducted in three (3) budget periods

- ☑ Budget Period 1
 - Process Engineering
 - Design Criteria
 - ☑ Sorbent Certification

Budget Period 2

- ☑ Detailed Engineering
- ☑ Procurement, Fabrication and Installation
- Pre-Startup Safety Review, Commissioning and Test Planning, (In Progress)

Budget Period 3

- □ Engineering Scale Testing and Analysis
- □ Technology Assessment

Progress and current status of project

Project has advanced well into late stage of construction:

- Detailed Engineering completed
- All ISBL skids received at site and set
- All ISBL/OSBL equipment received and installed
- RAM sub-assemblies received and erected
- Modules interconnection piping completed
- 1st set of SAB completed
- Commissioning beds completed
- Modules Electrical interconnection is complete
- System turnovers for Commissioning, with commissioning underway

Progress and current status of project

Field construction work is complete and now in commissioning

RAM erection at site with interconnection piping

Structured absorbent bed (SAB) manufacturing progress

1st set completed; being stored at Svante until needed on site Commissioning beds completed; on site

Project milestones – budget periods 2 & 3

Milestone log					
Budget period	Task	Milestone description	Planned completion date	Actual completion date	Verification method
2	4.0	Detailed Engineering	12/31/2021	12/31/2021	RPPR File
2	4.1	Rotary Seal Validation Testing	07/26/2021	09/14/2021	Design Validation Test Report Submitted
2	5.1	Sorbent Procurement (Phase II)	12/31/2021	01/14/2022	Purchase Order and Receiving Report
2	5.3	SAB Manufacturing	09/30/2022		Hardware Shipment
2	5.4	Shop testing and inspection report	05/31/2022	05/31/2022	Shop testing and inspection report file
2	5.5	System Installation	08/18/2022		Turnover Package
2	6.1	Pre-Startup Safety Review (PSSR)	09/30/2022		Continuation Application
2	6.3	Test Plan	07/18/2022	07/19/2022	Final Test Plan
3	7.1	Start-up and operator hand-off	10/21/2022		RPPR File
3	7.2	Parametric testing and steady state operation performance report	07/18/2023		Updated Test Report
3	7.3	14% Indicative Coal Flue Gas Feed Testing	01/31/2023		Preliminary Test Report
3	7.4	4% Indicative NGCC Flue Gas Feed Testing	05/12/2023		Updated Test Report
3	7.6	System Decommissioning	06/30/2023		Final Report file
3	8.1	Technology EH&S Risk Assessment	07/18/2023		Topical Report and summary in Final Report
3	8.2	Techno-Economic Analysis (TEA)	07/18/2023		Topical Report and summary in Final Report
3	8.3	State-Point Data Table	01/31/2023		State-Point Data Table file
3	1.0	Draft Final Report	07/30/2023		Final Report file

Final test plan

FINAL test plan covers the performance testing of SOPO objectives

- 1. Plant Start-up and Ramp-up –Includes operator training, commissioning and plant start-up to nameplate capacity based on an $\sim 8\%$ CO₂ feed flue gas composition.
- 2. Base Performance and Steady State Testing –Includes base performance on an ~8% CO₂ feed flue gas composition under a steady state. This will be the basis of the acceptance test.
- 3. 14% Indicative Coal Flue Gas Feed Testing –Includes the indicative coal-fired flue gas feed testing by recycling part of the CO_2 product back to the feed flue gas to increase the CO_2 concentration to ~14% under a steady state.
- 4% Indicative NGCC Flue Gas Feed Testing –Includes the indicative natural gas-fired combined cycle (NGCC) flue gas feed testing by introducing air to dilute the feed gas CO₂ concentration to ~4% under a steady state.
- 5. Load Following & Intermittence Testing –Includes assessment of the project technology to provide quick start-up and shutdown capabilities, and simulated load following, and high turndown ratio performed on the slip stream of flue gas from the existing natural gas-fired steam generator at ~8% CO₂ concentration.

Thank you

Thank you to our project sponsors

U.S. Department of Energy

Office of Fossil Energy

NETL – National Energy Technology Laboratory Grants Officer Lisa Kuzniar

Program Manager Nicole Shamitko-Klingensmith

> Contract Specialist Kelly Haught

Questions and answers

