Phase III Review: Large Pilot Testing of Linde-BASF Advanced Post-Combustion CO₂ Capture Technology at a Coal-Fired Power Plant (FE-0031581)

Kevin C. OBrien, PhD Director, Illinois Sustainable Technology Center Director, Illinois State Water Survey Prairie Research Institute University of Illinois at Urbana-Champaign Stephanie Brownstein Assistant Research Engineer, Illinois Sustainable Technology Center University of Illinois at Urbana-Champaign

DOE/NETL 2022 Carbon Management and Oil & Gas Research Project Review Meeting (Aug. 16, 2022)

Disclaimer

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

INOIS

PROJECT OVERVIEW

Phase II Funding: \$2,736,684 DOE: \$2,988,35 20% Cost Shipp: \$748,325 Work Contemporal Sept. 1, 2019 – Jan. 15, 2021 Phase Completed: May 31, 2021

Phase III Funding: \$67,000,000 DOE: \$47,000,000 Cost Share: \$20,000,000 (supplied by the State of Illinois) Work Period: June 1, 2021 – May 31, 2026

PROJECT OBJECTIVES:

City Water, Light and Power (CWLP) in Springfield, IL

Overall: Design, construct, and operate a 10 MW capture system based on the Linde / BASF advanced amine-based, post-combustion carbon dioxide (CO₂) capture technology at CWLP Dallman Unit 4, Springfield, IL.

Phase III: Build / Operate 10 MW capture system and compare performance with results from 1.5 MW testing at the NCCC. If successful, keep system for evaluating future capture and utilization testing technologies.

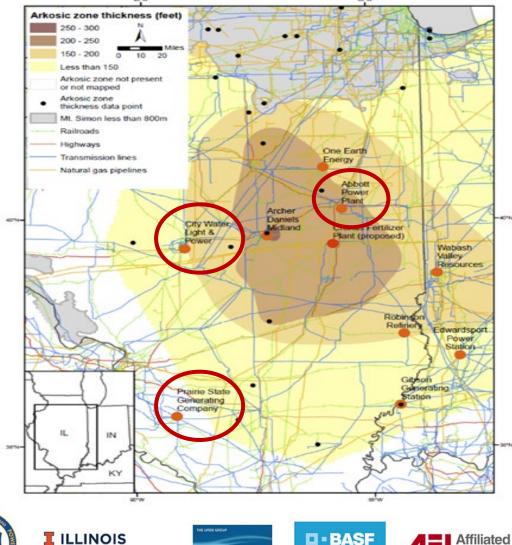
Part of Plan for Decarbonization of the Grid

WHY THE INVESTMENT BY THE **STATE OF ILLINOIS?**

Illinois: A Confluence of Geology, Technology, Government Investment

Creates unique advantages for the state of Illinois

- Ability to store CO₂ has provided a major motivator for large capture pilots and large-scale capture demonstration projects at CO₂ emitters within the state
- Unique geology of Illinois a major asset for CO₂ storage
- 45Q has been a major incentive a means to monetize CO₂
- US DOE funding has enabled the maturation of capture technologies that can be deployed at locations throughout the state
- State of Illinois' support with major cost share investment
- Elected officials at all levels interested in the job creation and regional economic benefits of these projects



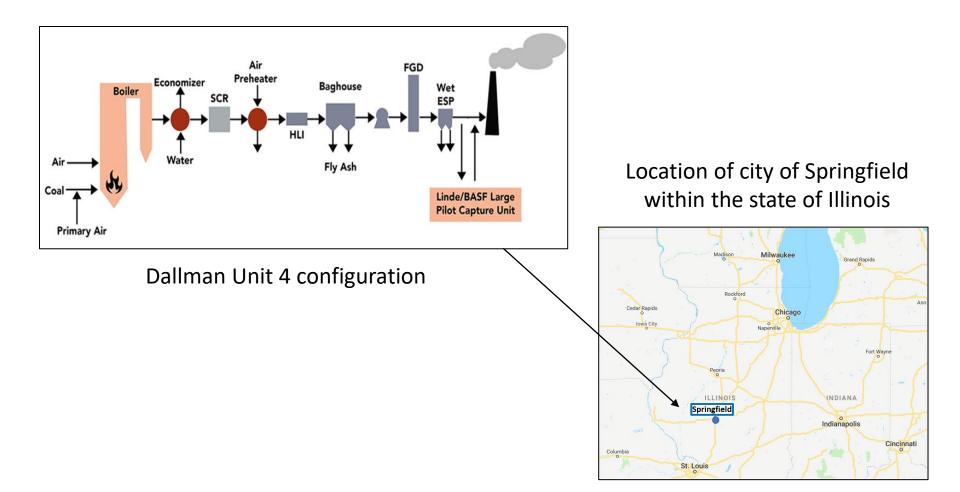
Capture Studies Coordinated with Geological Storage Studies

CarbonSAFE Phase III: Geological Storage

Prairie Research Institute

- Able to connect to CarbonSAFE's Phase III Illinois Geological Storage Corridor
- Sufficient CO₂ geological storage capacity near the host sites
- All sites within 100 miles of storage site
- Immediate access to Interstate highway

ILLINOIS Prairie Research Institute

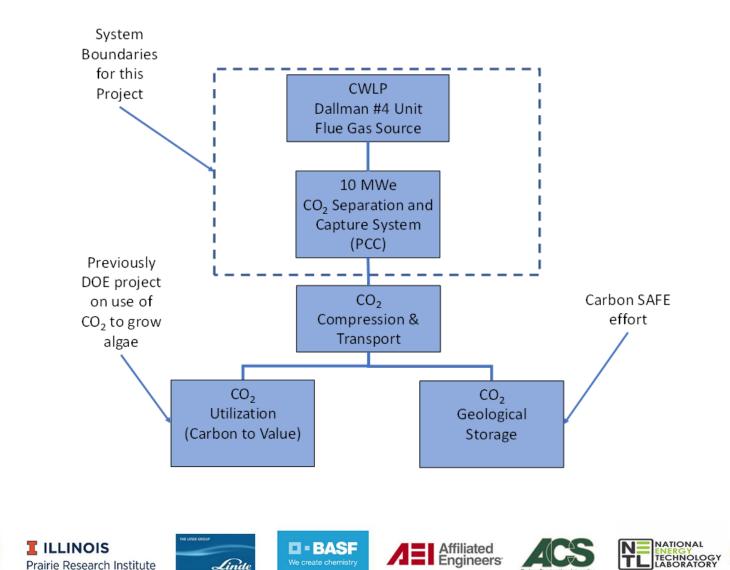

7

CITY WATER, LIGHT AND POWER

Build / Operate: Largest Capture R&D Pilot in the World (10 MW)

CWLP Location and Configuration

Traditional PC plant



System Boundaries for Project

Follow-on projects can connect to existing DOE projects for storage and utilization

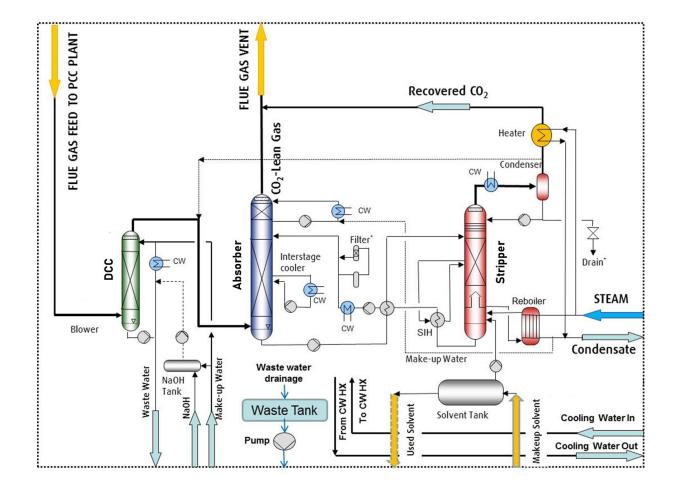
U.S. DEPARTMENT OF

City Water, Light and Power (CWLP)

Water and power supplier for City of Springfield

TECHNICAL BACKGROUND

ILLINOIS Prairie Research Institute



Linde / BASF Solvent Based Capture System

Reduced capital/energy costs

- Optimized BASF OASE[®] blue solvent
- Efficient CO₂ capture from lowpressure sources
- Longer solvent stability
- Lower solvent circulation rate

Notable Linde process improvements

- Dry bed water wash design to minimize solvent losses
- Stripper regeneration at 3.4 bars reducing CO₂ compressor cost and power consumption
- Advanced Stripper Interstage Heater to reduce regenerator steam consumption

Scale-up Factors at Each Stage for Development

DEVELOPMENT SCALE	YEAR	SIZE (MWe)	SCALE-UP FACTOR*	DEVELOPMENT STRAGETY
Lab scale; mini pilot	2004	0.015	n/a	Solvent selection and proof-of-concept under laboratory conditions
Bench scale: Niederaussem	2009	0.45	30	Solvent performance validation; emissions control testing under realistic conditions
Small pilot: NCCC	2016	1 to 1.5	3	Validation of unique process features aimed at reducing CAPEX – i.e., high-capacity structured packing, gravity-driven absorber inter-stage cooler, and unique reboiler design
Proposed large-scale pilot	2021-2026	10 to 12	7 to 8	Equipment performance validation at commercially relevant scale (i.e., uniform gas/liquid distribution in absorber and inter-stage heating in the stripper)
First commercial plant	2025-2030	200 to 600	20 to 50	At scale demonstration of complete CCS value chain (capture, compression, transport, and storage/ utilization)
nth commercial plant	2030+	600+	3 to 5	Safe, reliable, and economic operation in compliance with regulations

*Assumes PCC capacity of 20 tpd captured CO_2 for every 1 MWe (flue gas 13% CO_2 concentration)

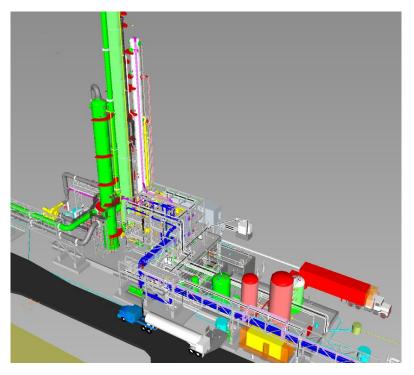
Attractive Techno-Economics for Linde / BASF Process

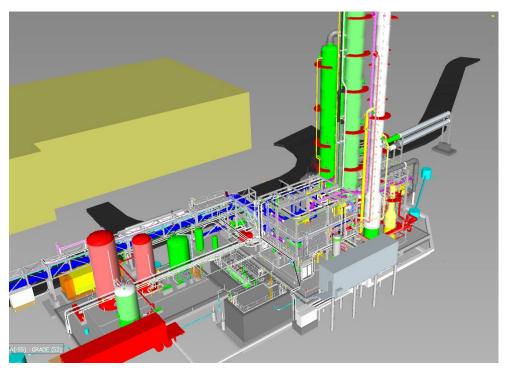
Baseline case: DOE-NETL supercritical PC power plants

Parameter	DOE NETL Case B12A	DOE NETL Case B12B	Linde BASF LB1	Linde BASF SIH	Linde BASF WHR
Description	No CO ₂ Capture	90% Capture w/ Cansolv PCC process	90% Capture w/OASE® Blue	90% Capture w/ OASE® Blue and SIH	90% Capture w/ OASE Blue [®] SIH, and WHR
Net Power Output (MWe)	650	650	650	650	650
Gross Power Output (MWe)	685	770	748	746	743
Coal Flow Rate (tonne/hr)	214.1	273.6	268.1	263.9	253.7
Net HHV plant efficiency (%)	40.3%	31.5%	32.2%	32.7%	34.0%
CAPEX without T&S (\$/MWh)	N/A	\$50.98	\$40.59	\$40.18	\$39.11
OPEX without T&S (\$/MWh)	N/A	\$54.24	\$51.35	\$50.70	\$49.04
Cost of CO ₂ captured with T&S (\$/MT)*	N/A	\$55.60	\$41.60	\$41.01	\$39.40
Cost of CO ₂ captured without T&S (\$/MT)*	N/A	\$45.65	\$31.44	\$30.69	\$28.66
COE (\$/MWh) with T&S*	N/A	\$114.12	\$100.84	\$99.78	\$97.05
PCC specific reboiler duty (GJ/MT CO ₂)	N/A	2.48	2.61	2.30	1.50

Case implemented in Phase III

ILLINOIS Prairie Research Institute





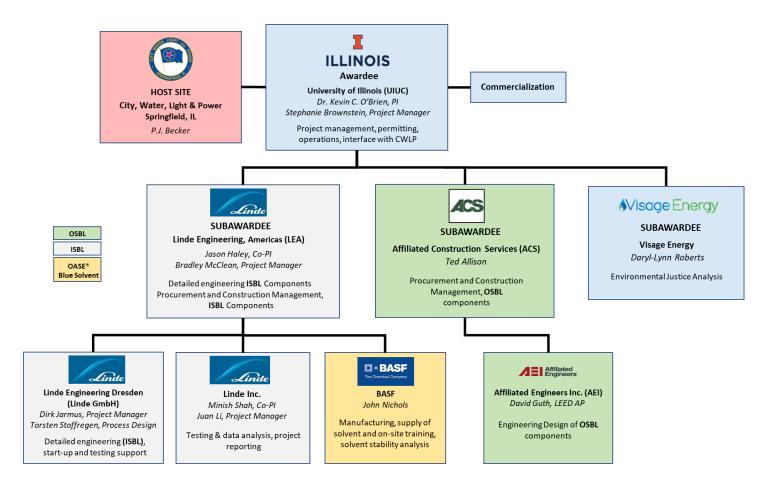
Linde/BASF Capture Unit 3D Rendering

Facing West (towards Lake Springfield / I-55)

Facing East (towards Dallman #4)

Phase III Kickoff / Transition from BP3 to BP4

PROJECT MANAGEMENT & RISK MANAGEMENT



Phase III: Project Management Structure

Consistent team throughout all phases

Project Tasks

BP1 for Phase III = BP3 overall for project

	Task #	Task	BP
	1.0	Project Management and Planning	All BP
(2.0	Baseline Techno-Economic Analysis (TEA)	
	3.0	Detailed Engineering and Specifications	
All BP3 tasks completed	4.0	Permit Application	BP3
completed	5.0	Construction and Execution Plan	
Charled	6.0	Long Lead Item Equipment Procurement	
Started Task 7	7.0	Equipment Procurement and Fabrication	
	8.0	Site Preparation and Foundations Installation	BP4
	9.0	Plant Construction and Installation	BP4
	10.0	Commissioning and Test Plan	
	11.0	Start-up and Operations	
	12.0	Operations and Testing	
	13.0	Analysis of Test Campaign Results	
	14.0	Updated Techno-Economic Analysis (TEA)	BP5
	15.0	Update of EH&S Assessment, TMP, and TCP	
	16.0	Economic Revitalization and Job Creation Outcomes Analysis	
	17.0	Dismantling and Removal	

ILLINOIS Prairie Research Institute

Task vs. Responsible Organization

WBS #	WBS Title	UIUC	Linde	ACS	BASF	Visage
1	Project Management and Planning	Х	Х	х	Х	
1.4	Workforce Readiness for Technology Development	Х				
1.5	Environmental Justice Analysis					Х
2	Baseline TEA		Х			
3	Detailed Engineering and Specifications		Х	Х	Х	
4	Permit Application	Х				
5	Construction and Execution Plan		Х	Х		
6	Long Lead Item Equipment Procurement		Х	Х		
7	Equipment Procurement and Fabrication		Х	Х		
8	Site Preparation and Foundations Installation	х	Х	Х		
9	Plant Construction and Installation		Х	Х		
10	Commissioning and Test Plan	х	Х			
11	Start-up and Operations	х	Х		Х	
12	Operations and Testing	Х	Х		Х	
13	Analysis of Test Campaign Results	Х	Х			
14	Updated TEA		Х			
15	Update of EH&S Assessment, TMP, and TCP	Х	Х			
16	Economic Revitalization and Job Creation Outcomes Analysis	Х				
17	Dismantling and Removal	Х	Х			

Completed in BP3

Milestones for Phase III

BP1 for Phase III = BP3 overall for project

Budget Period	Task Number	Description	Planned Completion Date	Actual Completion Date			
3	1	Updated Project Management Plan	9/15/21	9/15/21			
3	1	Updated Host Site Agreement	10/15/21	9/15/21			
3	1	Phase III Kickoff Meeting	11/15/21	10/13/21			
3	4	Permitting Issuances Complete	5/15/22	5/18/22			
3	1	Resource Loading Schedule in Place	5/31/22	5/27/22			
3	1	EVMS & Risk Management System in Place	5/31/22	5/27/22			
3	3	Detailed Engineering Complete	5/31/22	5/31/22			
4	7	Equipment Fabrication Complete	1/31/23				
4	9	Construction & Installation Complete	9/30/23				
5	11	Commissioning and Pre-Start-up Checks Complete	12/31/23				
5	11	Steady-State Operations Established	2/29/24				
5	12	Parametric Testing Complete	11/30/24				
5	12	Steady-State Testing Complete	8/31/25				
5	14	Updated TEA	5/31/26				
5	15	Updated EH&S / TMP / TCP	5/31/26				
All	1	Quarterly RPPR report	Each quarter	Quarterly			

Deliverables for Phase III

Task/ Subtask	Deliverable	Due Date
1	Project Management Plan	Update due 30 days after award. Revisions to the PMP shall be submitted as requested by the Project Manager.
1	Resource Loaded Schedule	Update due 30 days after award. Revisions to the PMP shall be submitted as requested by the Project Manager.
1	Earned Value & Risk Management Systems	Update due 30 days after award. Revisions to the PMP shall be submitted as requested by the Project Manager.
1	Workforce Readiness Plan	End of Budget Period 5
1	Environmental Justice Analysis	End of Budget Period 5
2	Baseline TEA	End of Budget Period 3
3.1	PFDs, P&IDs, and Utility Balances	End of Budget Period 3
3.1	Equipment Lists and Process Data Sheets	End of Budget Period 3
3.2	Plant Layout and General Arrangement Drawings	End of Budget Period 3
3	Final Detail Design Report	End of Budget Period 3
5	Construction Plan	End of Budget Period 3
10	Pre-Startup Safety Review (PSSR) Report	End of Budget Period 4
10	Pilot Commissioning and Test Plan	End of Budget Period 4
14	Updated TEA	End of Budget Period 5
15	Update of EH&S Assessment, TMP, and TCP	End of Budget Period 5
16	Updated Economic Revitalization and Job Creation Outcomes Analysis	End of Budget Period 5

Project Status Update

Highlights

- BP3 successfully completed on time and on budget
 - Detailed engineering, permit applications, and construction planning complete
 - Procurement of high priority equipment and materials complete
- Approval granted by DOE to proceed into BP4 in mid-June
 - Breaking ground September 2022
 - Procurement of remaining equipment and material items

Budget/Schedule

- To keep the project on schedule, it was decided to proceed into BP4 with available funding while efforts to quantify and plan around cost increases continue.
- Despite cost increases, the system can still be built and operated at the host site with existing funds.

Risk Management Review

Updated April 2022 / Ongoing (Living Document)

	OVERALL RISK	Description	Probability	Impact	Risk Management Mitigation and Response Strategies
		Technical Risks			
	Low	Scale-up risk: Vapor and liquid mal- distribution in the absorber column	Very Low	Medium	 Linde designs take into account vapor and liquic maldistribution issues. Structured packing that was validated as part of the 1.5 MW pilot has been incorporated into the absorber design for the 10 MW demo. Packing supplier is performing a double check o specifications. During installation of columns the levels will be checked to meet specifications.
Ļ	Low	Solvent-related issues (corrosion, adequate supply, handling)	Very Low	Low	 BASF expertise and testing experience from 0.5 and 1.5 MWe pilot plants. BASF developed a plan for solvent supply. Data from corrosion coupon testing from pilot plants has been incorporated into material selection. Early coordination discussions complete around storage and unloading requirements. Containment design has progressed.
	Medium	Unknown contaminants in the flue gas and amine carry- over	Low	Medium	 Addressed in Phase I by aerosol measurements and detailed flue gas analysis. Managed through analytical capability and established procedures.
	Medium	Integration with operations at the selected host site	Low	Medium	 Implemented biweekly coordination meetings between ISBL, OSBL and the host site.
	Medium	Wastewater stream management	Medium	Medium	 A strategy for wastewater handling was finalized The project will create three wastewater streams DCC condensate, amine contaminated, and rainwater. Uncontaminated rainwater will be discharged separately to CWLP's outfall point. Amine contaminated will first be minimized through process conditions. A reclaiming unit he been included in the design to reuse the amines contained in the wastewater. Any remaining amine contaminated water will be contained and shipped off-site. DCC condensate will be treated for sulfites and then discharged to SCWRD.
	Medium	Testing of new process units for energy optimization	Low	Medium	 Overall team expertise and external partners' know-how will be leveraged for the process optimization A test program will be developed in BP4 with objectives and metrics for validation of the stripper inter-stage heater (SIH).

	Cost/schedule Ris	sks		
High	ISBL equipment and nodule cost overruns	High	High	 BP3 updated quotes showing cost escalation caused by unforeseen changes in the market. 60% of equipment has been quoted, the remaining 40% has escalation added. Total cost forecast has been quantified.
Medium	DSBL equipment and naterials	Low	High	Quotes for FRP and steel came in at budget.PO's not yet issued.
High	SBL construction and installation cost overruns	Very High	High	Cost escalation 30% estimate based on Linde' current commercial project portfolio pricing (r yet quoted). Shifting to more shop fabrication versus field fabrication to control cost.
High	DSBL construction and installation cost overruns	High	High	 Budget estimates for construction were based bids from local contractors familiar with local conditions. Multiple bidders were invited for or scope of work. Anticipate cost escalations during final quotes
Medium	Dperations and naintenance cost overruns	Medium	High	 A detailed operations and maintenance (O&M cost estimate (including staff, consumables, ar utilities) was prepared as part of the costs for Phase III. Potential sources of operation personnel have been identified for the 24-month period. Operators will be coordinated through a 3rd pa Engineers and site managers will be provided Linde. Daily water/solvent analysis support w be coordinated by the University. The operations phase can be adjusted to contrucosts.
Medium	Cost over-runs due to unknowns	Medium	Medium	 Continued lack of clarity on supply chain imp to overall costs. Equipment, construction, and operating cost assessment are shown separately above.
Medium	Equipment / Module fabrication delay	Medium	Medium	Communications with the fabricator will be maintained during the fabrication period to resolve issues as they occur. Where possible, the engineering team will vis the fabrication shop during the fabrication per to assess progress and compliance. Major schedule impacts are reflected in cost increase.
	Financial Risks			
Low	Inability to meet cost share requirements	Very Low	High	 The team has secured a commitment from the State of IL for \$20 MM cost share. This mone has been set aside and allocated for this project
High	nability to neet Phase III priginal budget	High	High	The project team is requesting additional fund from DOE based on the identified escalations.

Ongoing Risk Mitigation

- Project Team will have weekly discussions on PO status, etc.
 - Include DOE on discussions to provide "just in time" awareness of variations in PO status and construction costs
- If costs begin to vary from the plan (either decrease or increase), PI will provide updates on operating time implications.

BP4 Schedule – In Progress

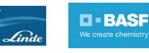
			2022		Qtr 3, 202	2	Qtr 4, 202	22	Q)tr 1, 2	023	Qtr 2	, 2023		Qtr 3	3, 2023		Qtr 4,	2023		Qtr 1
Task Name	Start	👻 Finish		Jun	Jul A	g Sep							May	Jun			Sep	Oct		Dec	Jan
BP4 (18 months)	6/1/22	11/30/23	F							*******					********				808080808		
4 7.0 Equipment Procurement and Fabrication	6/1/22	1/31/23	ſ			-															
7.1 Remaning ISBL Procurement	6/1/22	11/30/22	1.1		_																
7.2 ISBL Module Fabrication and Construction Packages	6/1/22	1/31/23	1.1		_																
7.3 Remaining OSBL Procurement	6/1/22	11/30/22	1.1		_																
7.4 OSBL Shop Fabrication	6/1/22	1/31/23	1.1		_																
Equipment Fabrication Complete	1/31/23	1/31/23								٠	1/31										
8.0 Site Preparation and Foundations Installation	9/1/22	12/1/22																			
8.1 Archaeological Monitoring	9/1/22	12/1/22																			
8.2 Site Preparation and Foundations	9/1/22	12/1/22																			
9.0 Plant Construction and Installation	3/1/23	9/30/23									—										
9.1 Module and Equipment Installation	4/1/23	5/31/23																			
9.2 Onsite Construction and System Integration	5/1/23	9/30/23																			
9.3 OSBL Onsite Construction and Tie-ins	3/1/23	9/30/23																			
Constrution and Installation Complete	9/30/23	9/30/23															•	9/3	0		
I0.0 Commissioning and Test Plan	9/1/23	11/30/23															_				
10.1 Pre-Commissioning	9/1/23	9/30/23																կ			
10.2 Commissioning	10/1/23	11/30/23															i i	+			
10.3 Test Plan	10/1/23	11/30/23															1				
BP4 Review - Go/No Go Decision	11/30/23	11/30/23																	•	. 11/	30

Current progress

DOE Site Tour

June 26, 2022

Civil Contractor Bid Walkthrough


July 19 & 20, 2022

Soil Sampling

July 19, 2022

Environmental Justice Analysis

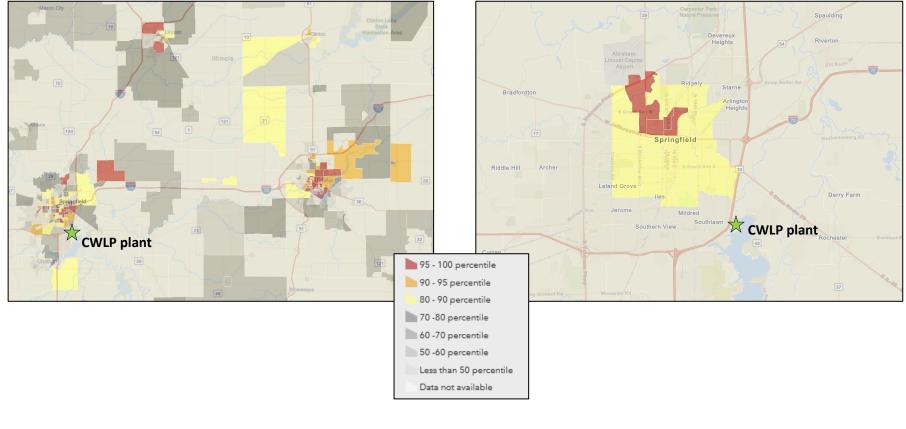
EJ of major interest since Qualified Opportunity Zones present in Springfield, IL

<u>Objective</u>

- Assess project impact on surrounding communities and potential distribution of anticipated benefits with key focus on traditionally marginalized and disproportionately impacted areas.
- Facilitate involvement of affected stakeholders by encouraging information exchanges and a mixture of engagement techniques, such as focus groups, small discussions, and educational workshops.

Progress

- Initiated social characterization/stakeholder mapping process of the surrounding areas to assess key EJ issues impacting regions.
 - Springfield is not characterized as DAC but existence of high levels of air toxics cancer risk and sections of unemployment/low income.
 - Surrounding DACs to be considered are: East St. Louis, Pike, Will, Gallatin, and Chicago.
- Intend to leverage coalition building and community engagement accomplished through recently passed Illinois Climate and Equitable Jobs Act which is aligned with DOE's Justice40 Initiative objectives.



Environmental Justice Maps (National Percentiles)

Unemployment Rate

2017 Air Toxics Cancer Risk

Summary and Conclusions

- BP3 competed on time and within budget
- Transitioned to BP4
- Long lead time procurement initiated
- Market induced cost increases have occurred for materials, equipment, and construction
- With current budget can still build and operate Large Pilot system
- Implemented risk mitigation plan to address cost increases
- EJ assessment in progress

Acknowledgements

Name	Organization
Andrew O'Palko, Carla Winaught	National Energy Technology Laboratory / US Department of Energy
PJ Becker, Deborah Williams, Mike Gorsek	City Water, Light & Power (CWLP)
Yongqi Lu, Vinod Patel, Jim Dexter, Jason Dietsch, Les Gioja, Torie Strole, Scott Prause, Bajio Varghese Kaleeckal, Hafiz Salih, Sebastiano Giardinella	Prairie Research Institute / University of Illinois
Jason Haley, Bradley McClean, Dirk Jarmus, Tom Durow, James Kim, Mary Uselmann, Minish Shah, Juan Li, Krish Krishnamurthy (consultant)	Linde
John Nichols	BASF
David Guth	Affiliated Engineers Inc (AEI)
Greg Larson, Ted Allison	Affiliated Construction Services (ACS)
Daryl-Lynn Roberts, Will Johnson	Visage Energy

This project is supported by the U.S. Department of Energy / National Energy Technology Laboratory (DOE/NETL) through Cooperative Agreement No. DE-FE0031581

