Pilot Testing of a Highly Efficient Pre-combustion Sorbent-based Carbon Capture System (Contract No. DE-FE-0013105)

Gökhan Alptekin, PhD Ambal Jayaraman, PhD Matthew Cates Freya Kugler Jim Dippo

2022 Carbon Management Project Review Meeting Capture from Power Generation Pilot-Scale Research

August 16, 2022

TDA Research Inc. • Wheat Ridge, CO 80033 • www.tda.com

Project Objectives and Team

Start Date = January 1, 2014

End Date = September 30, 2022

Budget

Project Cost = \$9,929,228

DOE Share = \$7,943,382

TDA and its partners = \$1,985,846

- Objective is to carry out a pilot scale evaluation TDA's sorbent-based precombustion capture technology
 - Evaluate technical feasibility in 0.1 MW_e slipstream tests
 - High fidelity process design and engineering analysis

<u>Main Project Tasks</u>

- ✓ Sorbent Manufacturing
 - Long-term cycling life tests
- ✓ Reactor Design
 - PSA cycle optimization
- Fabricate a Pilot-scale Unit for field tests
- Evaluations at various sites using coalderived synthesis gas
 - ✓ Decommissioning
- Techno-economic analysis

Integration to the IGCC Power Plant

Advantages

- Higher mass throughput to gas turbine higher efficiency
- Lower GT temperature Reduced need for HP N₂ dilution hence lower NO_x formation •
- Elimination of heat exchangers needed for cooling and re-heating the gas •
- Elimination of gray water treatment problem ۲
- Potential for further efficiency improvements via integration with WGS ٠

Operating Conditions

- CO₂ is recovered via a combined pressure and concentration swing process
 - CO₂ recovery at ~150 psia reduces the energy need for CO₂ compression
 - Small steam purge ensures high product purity
- Isothermal operation eliminates heat/cool transitions
 - Rapid cycles reduces cycle time and increases sorbent utilization
- Similar PSA systems are used in commercial H₂ plants and air separation plants

TDA's Sorbent

- TDA's uses a mesoporous carbon with surface functional groups that remove CO₂ via strong physical adsorption
 - CO₂-surface interaction is strong enough to allow operation at elevated temperatures
 - Because CO₂ is not bonded via a covalent bond, energy input for regeneration is low
- Heat of CO₂ adsorption is 4.9 kcal/mol for TDA sorbent
 - Net energy loss in sorbent regeneration is similar to Selexol; much higher IGCC efficiency can be achieved due to high temperature CO₂ capture
- Favorable material properties
 - Mesopores (10 to 100 A) reduce diffusion limitations

US Patent 9,120,079, Dietz, Alptekin, Jayaraman "High Capacity Carbon Dioxide Sorbent", US 6,297,293; 6,737,445; 7,167,354 US Pat. Appl. 61790193, Alptekin, Jayaraman, Copeland "Precombustion CO_2 Capture System Using a Regenerable Sorbent"

Technology Maturation Timeline

2008	2011	2013	2014	2017	2018	2019
Bench- scale tests	0.5-1 kW tests at NCCC	0.5-1 kW tests at Wabash River IGCC	Sorbent Scale-up IP secured	0.1 MW tests at NCCC	Integrated with WGS Tests with Praxair/Linde	0.1 MW Tests at Sinopec/ Yangtze Chem. Nanhua Plant

6

RESEA

Project Focus

0.1 MW_e evaluation in a world class IGCC plant to demonstrate full benefits of the technology

Testing with high pressure gas

Demonstrate full operation scheme

- 8 reactors and all accumulators
- Utilize product/inert gas purges

Nanhua Plant Syngas Supply

mol% 32.493

0.546

24.715

0.083

0

0.021

0.128

0.05

0.069

0

41.895

265.6

4

Composition

H2

CO

CO2

H₂S

COS C1

N2

AR

NH3

HCN

HCL

H₂O

温度 Temperature, C

压力 Pressure, MPaG

• H₂ recovery/CO₂ purity

Evaluations at various sites using coal-derived syngas

- Field Test#1 at NCCC Air blown gasification
- Field Test #2 at Sinopec Nanhua Petro-chemical Plant, Nanjing, Jiangsu Province, China – Oxygen blown gasification

National Carbon Capture Center

Sinopec/Yangtze Chemicals Petrochemical Complex

Slipstream Test Skid - Top View

Field Test Unit Installed at NCCC

- Installation with all the hook-ups were completed in March 2017
- Testing started in April 2017

Summary of Test Results at NCCC

- A successful 30-day (707 hrs) evaluation was completed at NCCC
 - Design flow at NCCC operating conditions was 1,420 SLPM (50 SCFM)
 - 97.3% capture @ 1,500 SLPM
 - 93%@1,800 SLPM
 - 90% @ 2,100 SLPM
- Pressure drop through the gas conditioning skid prevented flowing more than 2,100 SLPM of syngas through the PSA skids

Installation Work at Sinopec

Sorbent loading using socks

- Because of the delays getting all equipment to site, the test setup had to be moved to a different location in the plant
- An existing super-structure at the new site added complexity to installation
 - Skids were pipe rolled over berm and into place
 - Vessels were loaded manually using socks

Testing Results at Sinopec

- High syngas flow, high T, low P during start-up to avoid water/tar condensation in the system
- Up to 2500 SLPM Syngas Flow
- ~85% CO₂ removal efficiency
- ~110 kg/hr CO₂ removal rate

Summary of Test Results

flow rates (SLPM)				pressures (psia)			Syngas CO ₂ concentration.		
feed	steam	syngas product	CO ₂ and steam out	ads	des	bed T (°C)	Feed (%)	HP product (%)	CO ₂ removed
2,648	1,199	1,593	1,513	305	72	225	48	17	78%
2,752	253	2,060	481	298	59	249	37	17	65%
1,942	600	1,014	1,272	276	61	213	48	13	86%
1,983	1,200	1,486	1,262	298	61	192	45	11	83%
1,953	580	1,029	1,314	293	57	218	45	13	85%
2,174	892	1,185	1,273	304	36	214	47	14	84%
2,659	600	1,062	1,761	246	51	183	45	15	86%
859	129	556	128	134	79	288	46	15	78%

Parameters Varied

- Syngas Flow = 1500 to 2800 SLPM
- Steam Purge = 200 to 1200 SLPM
- Bed Temperature = 190 to 290°C
- Adsorption Pressure = 130 to 300 psia
- Desorption Pressure = 35 to 80 psia

System Performance

- DeltaT of ~20-30°C was measured as predicted in CFD simulations
- % CO₂ removal efficiency
- Up to 122 kg/hr CO₂ removal rate
- 3X the CO₂ removal rate compared to our tests at NCCC

Parametric Tests

- ~150 hours of testing with over 1,000 adsorption/desorption cycles were carried out using the same cycle sequence employed at the NCCC tests
 - ~86% CO₂ removal efficiency
 - ~110 kg/hr CO₂ removal rate
- While CO₂ capacity was higher compared to NCCC tests, CO₂ removal efficiency were lower than 90% due to the much higher CO₂ concentration in the gas
 - A sequence with shorter cycle time to switch the bed positions prior to CO₂ breakthrough was developed but not implemented

Decommissioning and Shipping

- Sinopec completed all the decommissioning activities and got the units prepared for shipment from Nanjing, China
- TDA worked with the shipping company (DSV Nanjing) got the units picked up and shipped to USA through Houston, TX
- Units are delivered to TDA in June 2022 and are now shrink wrapped and stored in Colorado

CFD Modeling/Model Validation

- Working with GTI, we developed a CFD model to support reactor design
- The model was tuned using the data from 0.1 MW system evaluated at the NCCC and Sinopec field tests (as well as data from smaller scale evaluations)
- CFD simulations reached steady state with the working capacity matching those reported in the data sets

Measurement of Sorbent Life

	Synthesis	Simulated	Steam				
	Gas	Gas	Purge				
Temperature	200°C	200°C	200°C				
Pressure	500 psig	200-500 psig	50-300 psig				
	Composition						
H ₂	42.8%	53.4%	50.0%				
CO ₂	30.0%*	30.0%	-				
H ₂ O	26.6%	26.6%	50.0%+				
CO	0.6%	-	-				
t adjusted for purge with 100% steeps at 150 pairs							

• Long-term cycling with the scaledup sorbent showed stable performance for over 60,000 cycles

* adjusted for purge with 100% steam at 150 psia

PSA Cycle Optimization

D. 6-step PSA cycle with CoBLO, purge, PREQ & LPP

 Cycle schemes that can meet DOE's 90% capture and 95% CO₂ purity targets were identified

F. 10-step PSA cycle with CnBLO, purge, three PREQ & LPP *Applied Energy, Volume 254, 15 November 2019, 113624*

Minimization of Energy Penalty

Sorbent Productivity/Bed Size Factor

- Configuration D: 6-step PSA cycle with one equalization and a co-current blowdown: <u>140</u> <u>kWh/tonne of CO₂ captured at productivity of</u> <u>5.2 mol CO₂/m³/s</u>
- **Configuration F:** 10-step PSA cycle with three pressure equalizations: <u>95.7 kWh/tonne of CO₂</u> <u>captured at productivity of 3.3 mol CO₂/m³/s</u>
- OPEX/CAPEX trade-off was evaluated for a fully optimized PSA cycle

Reactor Design

- Different reactor concepts have been evaluated
- Multi-train fixed bed reactors are selected for final design

	Vessels and Adsorbents	GE Gasifier	
A A		Syngas flow, kmol/h	34,747
	China Maria	Sorbent needed, kg	1,115,903
		L	1,859,838
		Cycle time, min	8
		Ads. GHSV, h ⁻¹	1,117
		Total Beds	16
		Bed. Volume, L	116,240
		Bed Dimensions	
		Diameter, ft	14
		Length, ft	30.1
		Vessel wall thickness, in	5.0
		L/D	2.30
and the second s	Value Shid	Particle size, in	1/8
	Valve Skid	Bed Pressure drop, psid	3.6

TDA Design

Source: Honeywell/UOP

World-class PSA systems used in H₂ purification produces up to 400,000 m³/hr H₂ (compared to ~780,000 m³/hr flow rate used in TEA base case)

Full-scale System Design

Major Units

- 8 beds x 2 = 16
- 2 accumulator x = 4
- Cycling Valves
 - 6 x 8 x 2 = 96
- 2 recycle compressors
- 2 isolation vales x 2 per train = 4

Techno-economic Analysis (Rev. 2a basis)

Gasifier	E-Gas		GE		Shell		TRIG	
Case	1	2	3	4	5	6	7	8
		Warm Gas		Warm Gas		Warm Gas		Warm Gas
	Cold Gas	Cleanup	Cold Gas	Cleanup	Cold Gas	Cleanup	Cold Gas	Cleanup
	Cleanup	TDA's CO ₂	Cleanup	TDA's CO₂	Cleanup	TDA's CO ₂	Cleanup	TDA's CO₂
CO ₂ Capture Technology	Selexol™	Sorbent	Selexol™	Sorbent	Selexol [™]	Sorbent	Selexol™	Sorbent
CO ₂ Capture, %	90	90	90	90	90	90	83	83
Gross Power Generated, kW	707,165	669,993	727,416	674,790	672,980	619,054	624,964	616,338
Gas Turbine Power	464,000	425,761	464,000	417,083	464,000	416,147	424,722	413,946
Steam Turbine Power	243,165	244,232	257,250	247,362	208,980	202,907	200,242	202,392
Syngas Expander Power	-	-	6,166	10,345	-	-	-	-
Auxiliary Load, kW	194,495	125,755	193,155	121,834	177,361	112,254	166,998	126,730
Net Power, kW	512,670	544,238	534,262	552,956	495,620	506,800	457,966	489,609
Net Plant Efficiency, % HHV	30.8	34.0	31.9	34.4	30.8	33.4	31.5	34.2
Coal Feed Rate, kg/h	220,557	212,265	222,026	213,013	213,509	201,426	262,700	258,882
Raw Water Usage, GPM/MW	11.0	10.7	11.0	10.8	10.3	11.1	8.2	9.6
Total Plant Cost, \$/kW	3,466	3,063	3,369	3,160	3,901	3,560	3,736	3,328
COE without CO ₂ TS&M, \$/MWh	137.3	121.1	133.6	124.0	150.1	138.6	125.5	112.5
COE with CO₂ TS&M, \$/MWh	146.3	129.2	142.2	131.9	159.0	146.8	144.3	129.9
Cost of CO2 Capture, \$/tonne	43	28	38	29	49	39	40	27

- IGCC plant with TDA's CO₂ capture system achieves higher efficiencies (34.4% and 34.0%) than IGCC with Selexol[™] (31.9% and 30.8%) for E-Gas[™] and GE gasifiers
- Cost of CO₂ capture is calculated as \$29 and \$28 per tonne for GE and E-Gas[™] gasifiers, respectively (24-35% reduction against Selexol[™])
- Cost of CO₂ capture is calculated as \$40 and \$28 per tonne for Shell and TRIG gasifiers, respectively (20-33% reduction against Selexol[™]) 22

Acknowledgements

- DOE/NETL funding under the DE-FE-0013105 project
- Project Manager, Andrew O'Palko
- Chuck Sishtla, GTI
- Ashok Rao, UCI (retired)
- Arvind Rajendran, UOA
- Frank Morton, NCCC
- Mr. Yang, Sinopec

