A High Efficiency, Modular Pre-combustion Capture System for 21st Century Power Plant Poly-generation Process (Contract No. DE-FE0031926)

Gökhan Alptekin Ambalavanan Jayaraman Michael Bonnema Matthew Schaefer

TDA Research, Inc.

NETL Annual Review Meeting

August 16, 2022

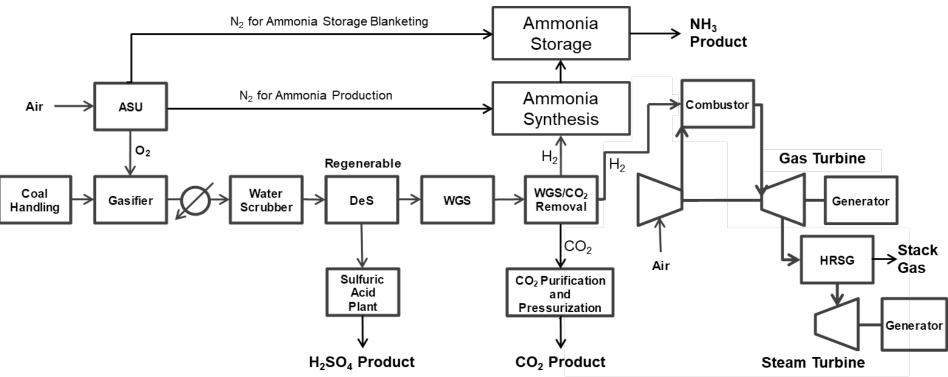
TDA Research Inc. • Wheat Ridge, CO 80033 • www.tda.com

Project Objectives

UNIVERSITY of CALIFORNIA - IRVINE

Project Duration

Start Date = October 1, 2020


End Date = September 30, 2024

_	DOE Share	Cost Share	Total
BP 1	\$1,007,692	\$251,850	\$1,259,542
BP 2	\$738,746	\$184,743	\$923,489
BP 3	\$1,253,562	\$313,407	\$1,566,969
Total	\$3,000,000	\$750,000	\$3,750,000

- The objective is to demonstrate technoeconomic viability of a modular coal-toenergy-and-chemicals process with a focus on syngas treatment and processing
 - A high temperature PSA adsorbent/WGS process is used for CO₂ removal
 - A fixed-bed TSA based sulfur removal system will be used to remove H₂S
 - High temperature process to remove contaminants from product CO₂
- Project Tasks
 - Design/build a fully-equipped slipstream test unit with 10 SCFM treatment capacity
 - Demonstrate the operation of the integrated system in achieving high CO₂ and contaminant removal efficiency
 - Design of the integrated system
 - High fidelity process design and economic analysis

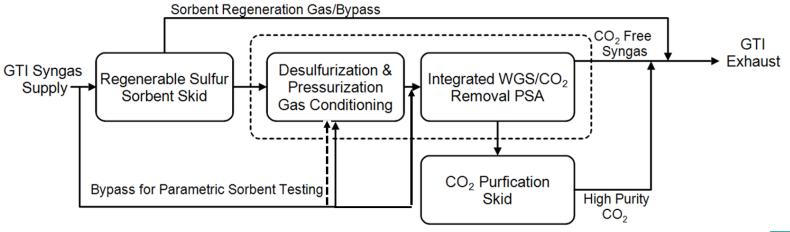
Process Schematic

Advantages

- Higher mass throughput to gas turbine higher efficiency
- Lower GT temperature Reduced need for HP N₂ dilution hence lower NO_X formation
- Elimination of heat exchangers needed for cooling and re-heating the gas
- Elimination of gray water treatment problem
- Efficiency improvements/process intensification via integration with WGS

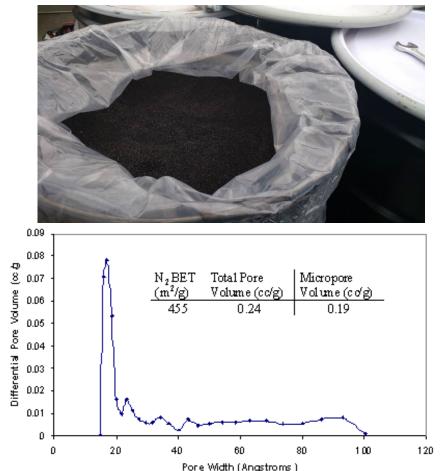
TDA's Approach – Carbon Capture

- In conventional coal-to-hydrogen or coal-to-power applications, a multi-stage WGS process with inter-stage cooling is commonly used
 - WGS is an equilibrium-limited exothermic reaction
- Water is supplied at concentrations well above that is required by the reaction stoichiometry to completely shift the CO into CO_2
- Excess water is also used to suppress carbon formation


3-stage WGS unit as described in the DOE/NETL-2007/1281

- In our process, WGS catalyst is combined with a high temperature CO₂ adsorbent to achieve high CO conversion <u>at low steam:carbon ratios</u>
- Reduced water addition increases process efficiency

Integrated Synthesis Gas Treatment System


- Pre-combustion capture using a high temperature PSA adsorbent integrated with low temperature WGS process
 - Sorbent Development (DE-FE-0013105); Reactor Development (DE-FE-0012048); Proof-of-Concept Evaluations (DE-FE0023684)
- Removal of sulfur compounds (H₂S, COS, CS₂)
 - Fixed-bed sulfur sorbents (DE-AM26-99FT40463)
 - DOE/NETL holds the patents (US5,703,003, US5,866,503)
- Removal of trace contaminants (As, Hg, Se, HCN) (DE-FC26-05NT42460)
- CO₂ Purification Trace Oxygen Removal (DE-FE0029090)

TDA's Sorbent

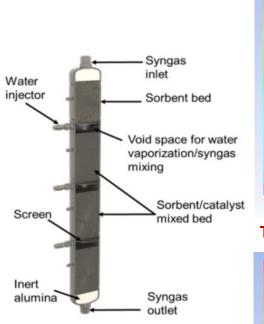
- TDA's uses a mesoporous carbon with surface functional groups to remove the CO₂ via strong physical adsorption
 - CO₂-surface interaction is strong enough to allow operation at elevated temperatures
 - Because CO₂ is not bonded via a covalent bond, energy input for regeneration is low
- Heat of CO₂ adsorption is 4.9 kcal/mol for TDA sorbent
 - Net energy loss in sorbent regeneration is similar to Selexol; much higher IGCC efficiency can be achieved due to high temperature CO₂ capture
- Favorable material properties
 - Mesopores (10 to 100 A) reduce diffusion limitations

US Patent 9,120,079, Dietz, Alptekin, Jayaraman "High Capacity Carbon Dioxide Sorbent", US 6,297,293; 6,737,445; 7,167,354 US Pat. Appl. 61790193, Alptekin, Jayaraman, Copeland "Precombustion CO₂ Capture System Using a Regenerable Sorbent"

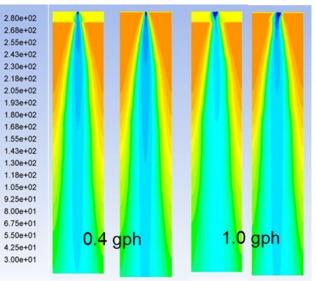
Sorbent Development Work

TDA 0.1 MW pre-combustion carbon capture unit installed at the National Carbon Capture Center

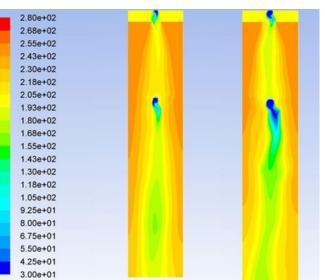
- 0.1 MW_e test in a world class IGCC plant to demonstrate full benefits of the technology
 - Field Test#1 at NCCC
 - Field Test #2 at Sinopec Yangtze Petrochemical Plant, Nanjing, China
- Full operation scheme
 - 8 reactors and all accumulators
 - Utilize product/inert gas purges
 - H₂ recovery/CO₂ purity

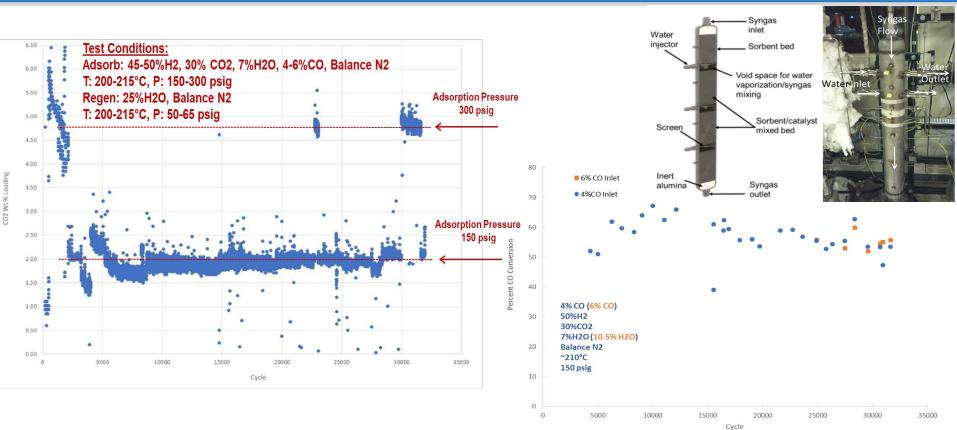


Yangtzi Petro-chemical Plant 🔫

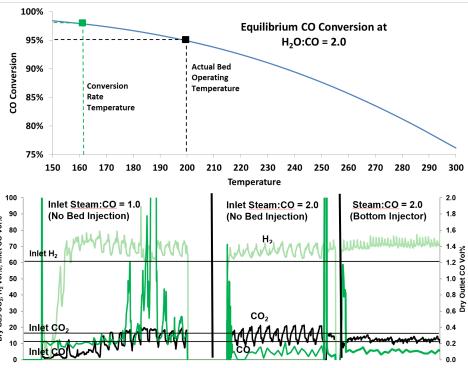


Heat Integrated WGS & CO₂ Capture


- Advanced heat management concept based on direct water injection has proven to achieve much better temperature control
 - Also much better heating efficiency (i.e., kJ heat removed per kg water)
- Uniform cooling without hot or cold spots
- The temperature rise is optimal when the catalyst is distributed into multiple layers with water injections before each layer

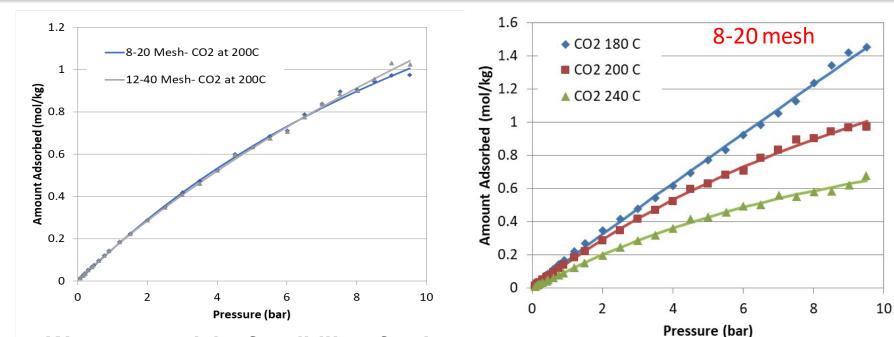

T Contours (°C) Single Injection Layer

T Contours (°C) Multiple Injection Layers


Life Tests – WGS/CO₂ Capture

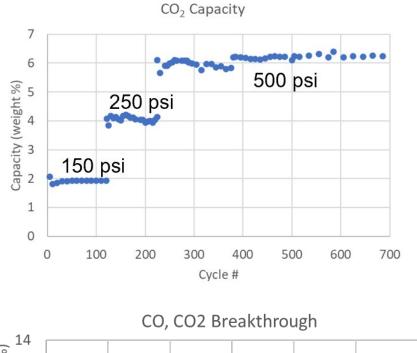
- We completed 32,000 cycles showing stable performance for the integrated WGS catalyst and CO_2 sorbent bed
- Measuring catalytic activity (by itself) through multiple cycles showed that the exposure to the reducing/oxidizing conditions had no adverse effect on the WGS catalyst

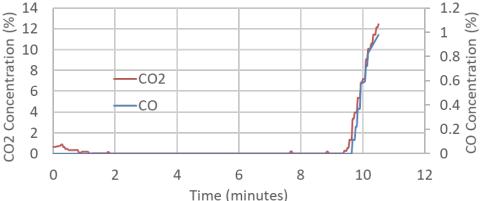
Integrated WGS/CO₂ Capture System

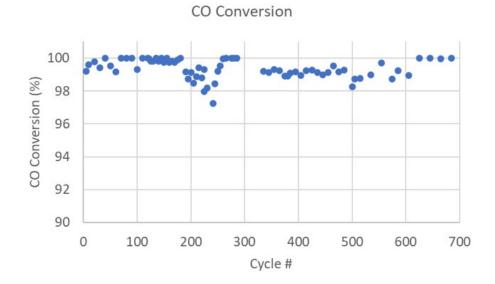


- Evaluations at Linde/Praxair R&D Center (Tonawanda, NY)
 - Integrated with OTM on natural gas
- Overall CO conversion >98% was achieved
- By coupling the WGS with CO₂ sorbent and water injection, we were able to operate the beds at 200°C but achieve the equilibrium CO conversion of a 40°C cooler bed

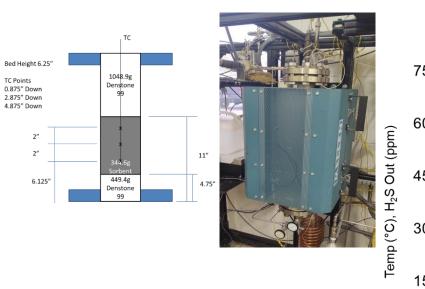
Modification of the CO₂ Sorbent

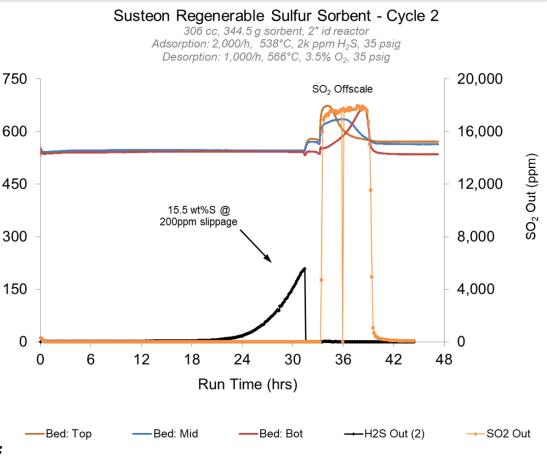



- We assessed the feasibility of using 8-20 mesh size sorbent and measured CO₂ isotherms at 180, 200 and 240°C
- Material prepared at 12-40 and 8-20 mesh size achieved similar capacity
- 12-40 mesh particles worked slightly better at 240°C

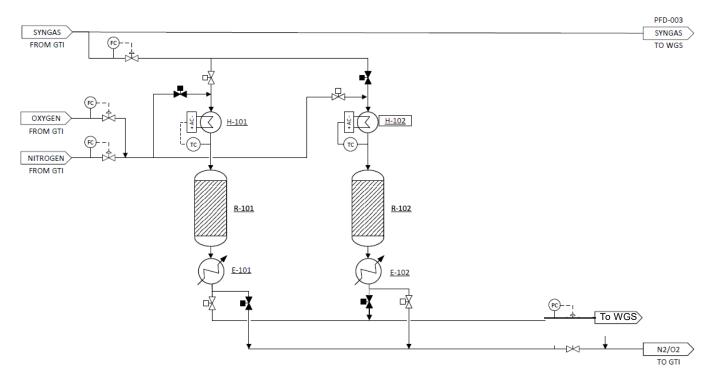


CO₂ Sorbent/WGS Catalyst Testing




- At 500 psi, WGS/CO₂ sorbent bed achieved 6.2% wt. CO₂ capacity and 99% CO conversion (far exceeding our Milestone M1.1 4% wt. CO₂ capacity at 500 psi)
- 700 cycles with no signs of degradation

Manufacturing and Qualification of the Regenerable Sulfur Sorbent



- Susteon has Clariant produce a large batch of its regenerable sulfur sorbent
- Multiple cycling of sorbent is underway (at bench-scale) to assess the long-term stability of the sorbent
- Optimize regeneration conditions

Design of Regenerable Desulfurization System

- Design of the slipstream test skid to be used in the demonstration of the high-temperature sulfur removal was completed
- Design was approved by GTI

•

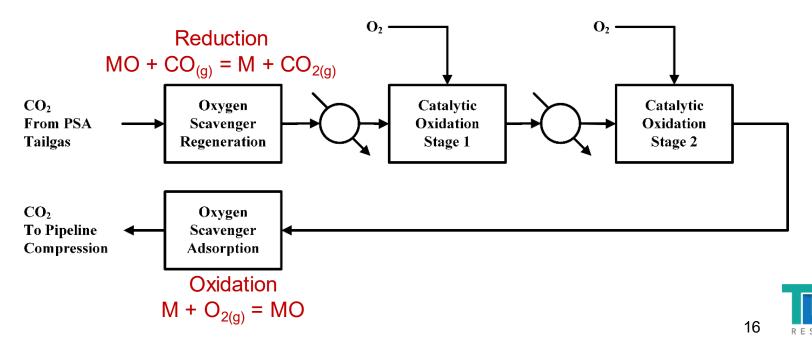
- · Electric heaters on inlet gas to achieve the required temperatures
- Air-cooled exchangers to cool the outlet gas

CO₂ Purification Requirement

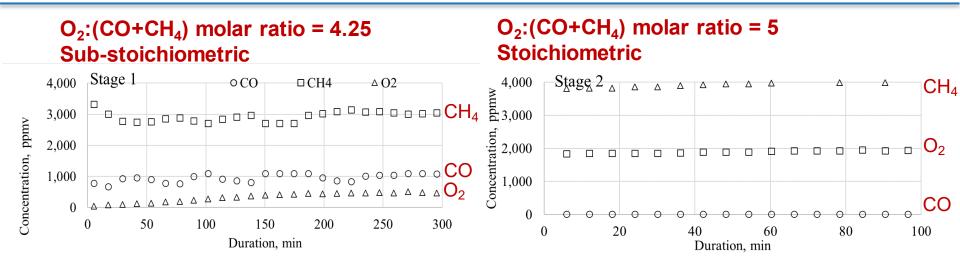
Component	Unit	Carbon Steel	Venting Concerns		
		Pipeline			
	Max	Recommended			
CO_2	vol% (min)	95	IDLH 40,000 ppmv		
H_2O	ppmv	500			
N ₂	vol%	4			
O ₂	vol%	0.001			
Ar	vol%	4			
CH_4	vol%	4	Asphyxiate, Explosive		
H ₂	vol%	4	Asphyxiate, Explosive		
СО	ppmv	35	IDLH 1,200 ppmv		
H_2S	ppmv	4			
SO ₂	ppmv	100	IDLH 100 ppmv		
NO _X	ppmv	100	IDLH NO-100 ppmv,		
			NO_2 -200 ppmv		
NH ₃	ppmv	50	IDLH 300 ppmv		
			Lethal @ High Conc.		
COS	ppmv	trace	(>1,000 ppmv)		
C_2H_6	vol%	1	Asphyxiant, Explosive		
C3+	vol%	<1			
Part.	ppmv	1			
HCl	ppmv	N.I.*	IDLH 50 ppmv		
HF	ppmv	N.I.*	IDLH 30 ppmv		
HCN	ppmv	trace	IDLH 50 ppmv		
Hg	ppmv	N.I.*	IDLH 2 mg/m3 (organo)		
Glycol	ppbv	46			
MEA	ppmv	N.I.*	MSDS limits, 3 ppmv		
Selexol	ppmv	N.I.*			

CO₂ transmission specifications are stringent

- < 1% total HC
- \cdot < 4 ppm H₂S
- · < 35 ppm CO
- < 10 ppm O₂
- All separation systems (sorbents, membranes and solvents) need to include impurity removal options to meet the pipeline CO₂ spec
 - For post-combustion and oxycombustions systems O₂ requirement is the most stringent
 - For syngas, there is also the need to remove CO



CO₂ Purification Technology


- A hybrid process is developed that combines catalytic oxidizer and a REDOX based oxygen scavenging sorbent
- Catalytic oxidation removes hydrocarbons/combustibles (e.g., CO, CH₄, H₂)
 - Operates with slight excess of oxygen
 - Adiabatic, multi-staged design with intercoolers for heat management

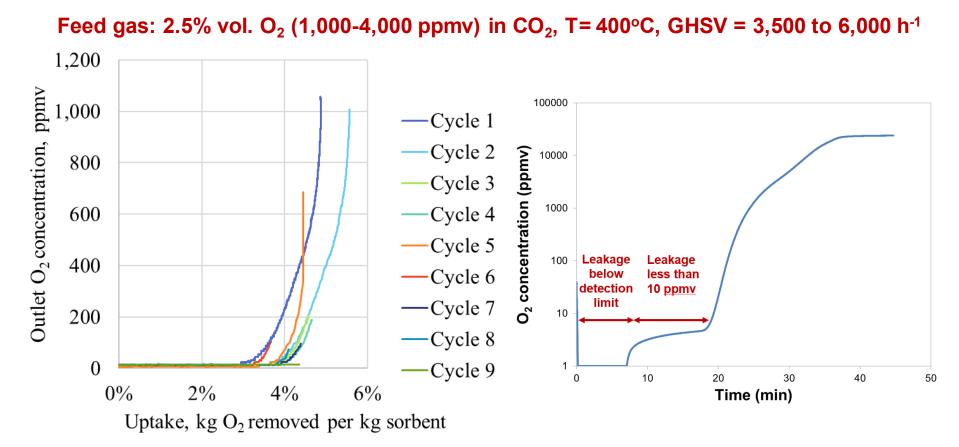
Oxygen Scavenging System polishes excess O₂ to <10 ppm

- · Regenerable mixed metal oxide based chemical looping process
- Oxidation step captures O₂; Reduction with inlet gas regenerates the sorbent

Evaluation of the Oxidation Catalyst

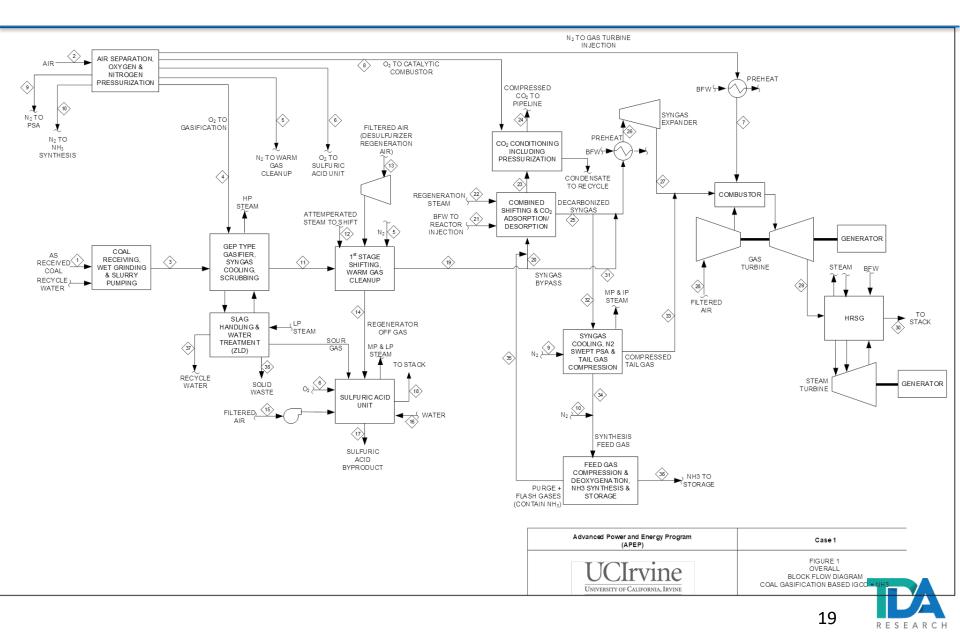
Stage 1

- Operates w/ sub-stochiometric O₂ (fuel rich)
- Inlet 2% vol. CO and 2% vol. CH_4 in CO_2


Stage 2

- Operates with excess O_2 (fuel lean)
- Outlet gas meets spec for HC < 1% vol, CO < 35 ppmv

	Stage 1	Stage 2
Inlet Temp (°C)	160	300
Outlet Temp (°C)	453	456
HC Percentage Inlet	4	4
(total)		
O ₂ Percentage	4.25	4.25
O ₂ Out (ppm)	7.31	4026
CH ₄ Out (%)	0.43	0.19
CO Out (ppm)	813	10.2
Steam (%)	46	46
Pressure	150	150


TDA's O₂ Scavenger Sorbent

- Oxygen scavenger was tested for nine cycles verifying consistent breakthrough capacity with <10 ppmv O_2 in the outlet
- Uptake is 3.8%-w O₂ at <10 ppm O₂ slip

TEA Poly-generation - BFD

Process Design and System Analysis

Case	1	2	2	4
	1	2	3	4
Gross Power Generated (At Generator Terminals), kWe		I	1	
Gas Turbine Power	208,022	88,000	88,000	88,000
Steam Turbine Power	155,650	68,494	67,442	71,843
Syngas Expander Power	3,824	1,701	1,643	2,034
CO2 Vent Expander	-	-	-	4,363
Total Power	367,496	158,194	157,085	166,241
Auxillary Load Summary, kWe				
Total Auxillaries	166,134	73,399	73,741	65,560
Net Power, kWe	201,362	84,795	83,345	100,681
Coproduct NH3, ST/D	2,310	976	956	1,160
Total (Electric + Coproduct) Energy, kW	746,752	315,236	309,030	374,558
Net Plant Efficacy, %HHV	49.16	47.90	47.39	52.77
Carbon Captured, %	90.0	90.0	95.8	-
Total Plant Cost , \$1000	3,109,013	1,579,429	1,584,599	1,618,209
Process Economics, NH3 Production				
1st year Required Sale Price w/o CO2 T&S, \$/ST	1,414	1,714	1,759	1,454
1st year Required Sale Price, \$/ST	1,457	1,758	1,806	1,454

NH₃ RSP Sensitivity to Sale Price of Electricity for Case 2

Electricity Credit	\$/MWh	64.5	71.7	78.9	107.2	152.3
NH3 RSP with CO ₂ T&S	\$/ST	1,773	1,758	1,743	1,684	1,590

DOE Baseline Rev. 4 Study Basis \$2018 basis

Acknowledgements

- NETL, Project Managers, Andrew Jones, Dr. Elliot Roth, Dr. Nicole Shamitko-Klingensmith
- Chuck Shistla and Scott Trybula, GTI
- Dr. Ashok Rao, UCI
- Dr. Raghubir Gupta and Dr. Andrew Tong, Susteon

Disclaimer: "This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof."

