Membrane-Sorbent Hybrid System for Post-Combustion Carbon Capture (DE-FE-00031603)

Gökhan Alptekin, PhD
Ambal Jayaraman, PhD
Mike Bonnema
Douwe Bruinsma, PhD
Matt Cates
Mike Cesario
Dave Gribble
Brandon Gushlaw
Jerrod Hohman
Freya Kugler

TDA Research, Inc.

August 16, 2022

Project Objectives and Project Team

Project Duration

- Start Date = August 18, 2018
- End Date = February 14, 2023

Budget

- Project Cost = \$11,498,524
- DOE Share = \$9,198,799
- TDA & its partners = \$2,299,725

- Design and construct a ~1 MW_e scale membranesorbent hybrid system for post-combustion carbon capture
- Hybrid process combines a polymer membrane and a low-temperature physical adsorbent to remove the CO₂ from flue gas
 - Membrane is being developed by MTR
 - Adsorbent has been developed by TDA for postcombustion capture

Main Project Tasks

BY1

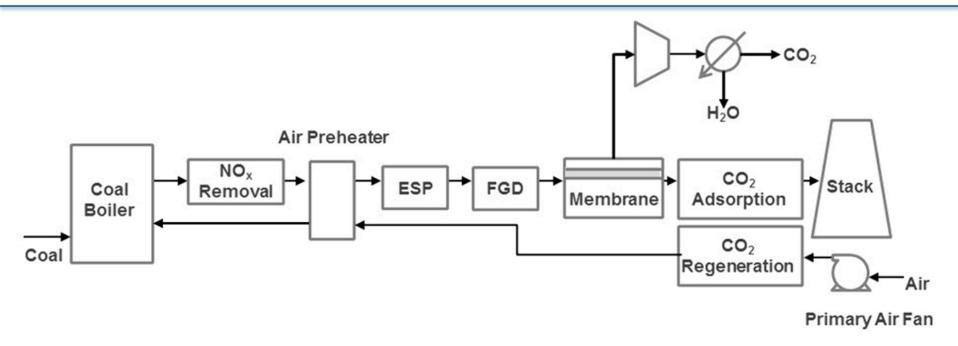
✓ Design of the Test Unit

✓ Initial Design Review

 Preliminary Techno-economic analysis

BY2

✓ Fabrication of the Test Unit


 Site Preparation, Installation and Shakedown Tests

BY3

✓ Field Tests (ongoing; 6–12 months duration)

 High Fidelity Techno-economic Analysis

Hybrid Membrane Sorbent Process

- Membrane operates at ~50°C under mild vacuum, (~0.2 atm) removes ~55-60% of CO₂ and almost all water
 - TDA's sorbent removes remaining CO₂ in the membrane effluent (retentate) ensuring 90+% carbon capture
 - The boiler feed air is used as a sweep gas to facilitate sorbent regeneration
 - CO₂ circulation to the boiler air intake increases the CO₂ concentration in the flue gas, providing a higher driving force for the membrane

Technology Maturation

0.5–1 kW Sorbent Only Tests

Gas Technology
Institute (GTI)
Tests with pilot coal
combustor

0.5–1 kW Hybrid Tests

Western Research Institute/ Thermosolv

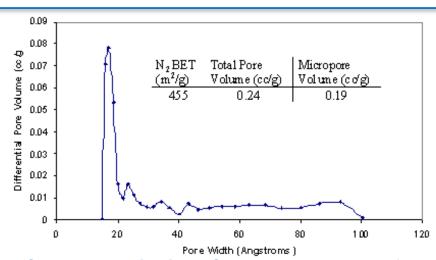
50 kW Hybrid Tests

Wyoming Integrated Test Center (WITC) Basin Electric's Dry Fork Station Gillette, WY

0.5–1 MW Hybrid Tests

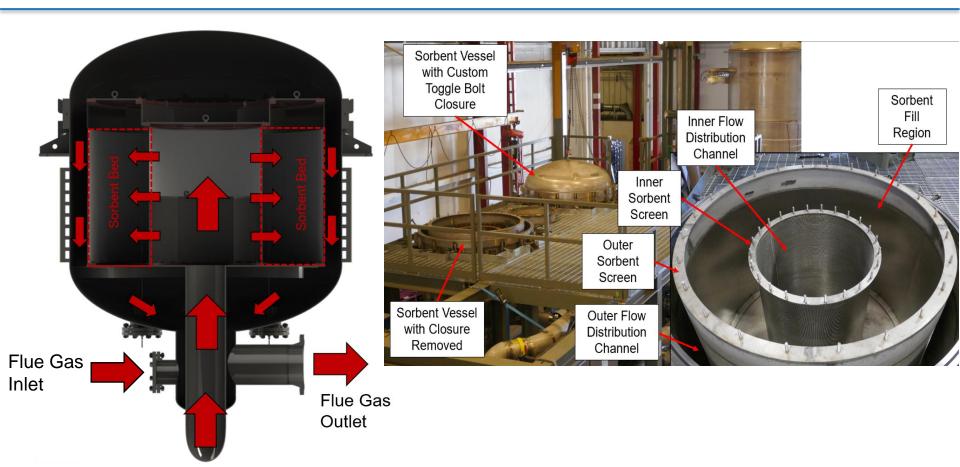
Technology Centre Mongstad (TCM) Norway

2011	2014	2015	2016	2017	2019-20	2021
Bench- scale tests	0.5-1 kW Sorbent Only tests at TDA	0.5-1 kW Sorbent Only tests at GTI Coal flue gas	Sorbent Scale-up IP secured	0.5-1 kW hybrid tests at WRI with Coal flue gas	50 kW hybrid tests at WTIC with Coal flue gas	0.5-1 MW hybrid tests at TCM with Coal flue gas

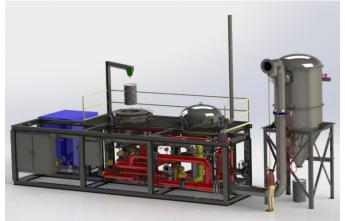

TDA Sorbent

- TDA developed a mesoporous carbon sorbent modified with surface functional groups that remove CO₂ via strong physical adsorption
 - CO₂-surface interaction is strong enough to allow operation at low partial pressures
 - Because CO₂ is not bonded, the energy input for regeneration is low
- Heat of CO₂ adsorption is 4-5 kcal/mol

US Patent 9,120,079, Dietz, Alptekin, Jayaraman "High Capacity Carbon Dioxide Sorbent", US 6,297,293; 6,737,445; 7,167,354


Sorbent optimization and production scale-up was completed in a separate DOE project (DE-0013105)

Sorbent operation in a VSA system was successfully demonstrated with actual flue gas (DE-0013105)

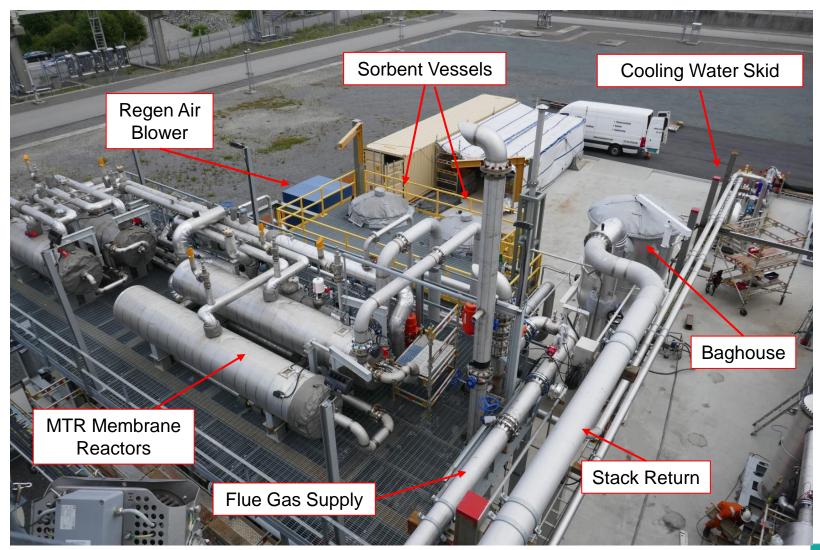


TDA Radial Flow Reactor Concept

- Sorbent is loaded in annular section of the vessel
- The flow is in radial direction.
- Higher cross-sectional area and lower bed depth minimize the dP through the bed

Project Focus

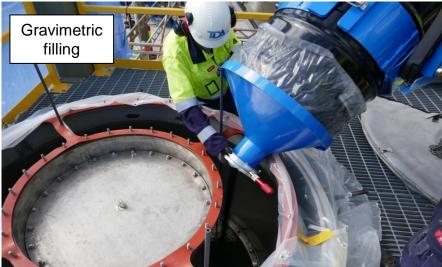
TDA's Sorbent System


Existing MTR Membrane Module

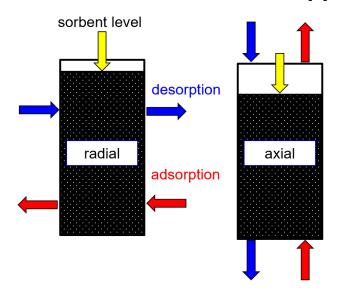
TCM Mongstad, Norway

- Demonstrate sorbent performance
 - √ CO₂ removal efficiency
 - √ CO₂ uptake capacity
- ✓ Demonstrate the mechanical stability of the sorbent
- Demonstrate sorbent life
- Demonstrate effective operation of the radial flow reactors
 - Low pressure drop and modular operation
 - Uniform flow distribution
- Development/Validation of Design Models (CFD and Adsorption Models)
- Cycle optimization
- Optimization of the Hybrid System Operation

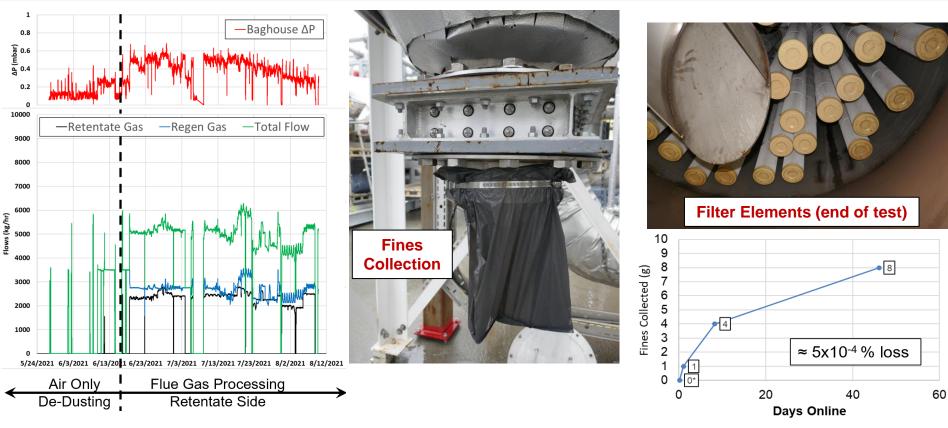
Hybrid Membrane System Overview


Sorbent Vessels

Sorbent Loading into the Vessels



Sorbent Settling and Retainment


- Sorbent settling is not desirable as it generates a void at the top of the bed and cause flow by-pass
- System design and loading procedures ensured effective pre-settlement
- Top of the sorbent bed is sealed with custom gaskets
- After a short run, the beds are topped off (≤ 2% of total sorbent mass)

- Amount of dust generated was surprisingly low (much lower than we observed in axial beds)
- Sorbent retention was excellent; total fines collected in the baghouse over the first month of operation was ≤ 0.0006% wt. of the initial load

Measurement of Sorbent Dusting

- Baghouse pressure drop was low and stable over time; consistent with a low rate of fines collection
- Total volume of dust collected in baghouse to date is ≈ 8g (very low compared to total sorbent inventory of ~1.7 tonne)
 - The collected particulates also included fabrication debris

Field Test Summary

Time online (taking flue gas):

- 4,001 hours[†] (≈ 167 days)
- Availability 80.5%
 - Excludes 1-month planned TCM maintenance stoppage and holiday break

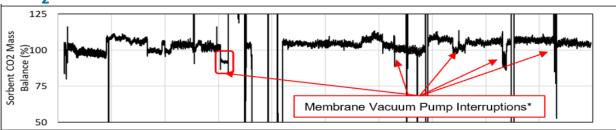

RFCC flue gas CO₂:

- 1,889 tonne received[†]
- 1,645 tonne captured
- 87.1% net capture efficiency (w/ upsets)
- 161,182 sorbent cycles

CO₂ Capture Breakdown

	< 90%	> 90%	> 95%	
hours	1,789	1,482	307	
days	92	75	13	
Percent of run time	55.3%	44.7%	7.7%	

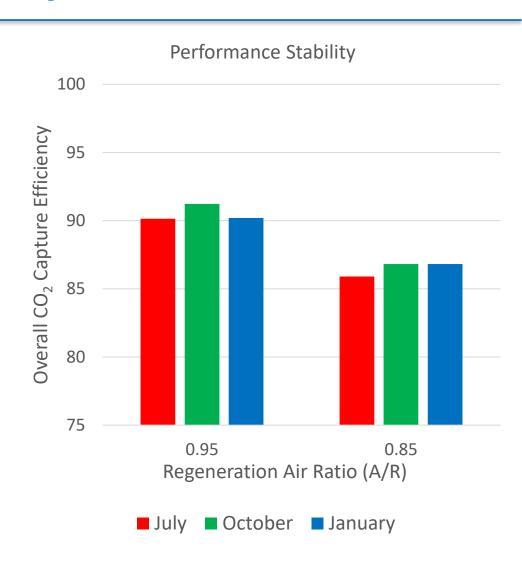
CO₂ Capture Efficiency



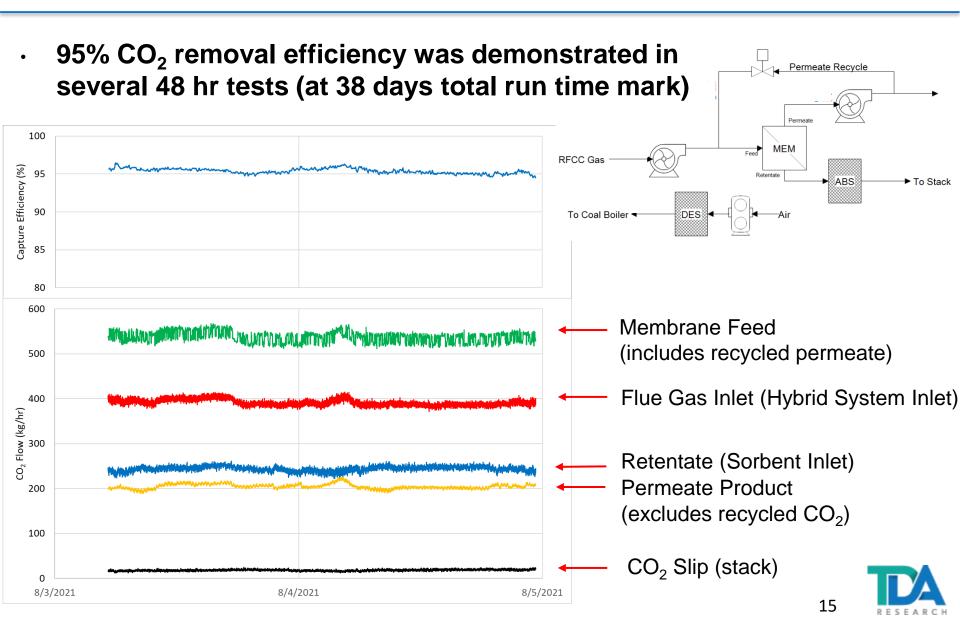
CO₂ Flow Rate – In and Out

* - Membrane vacuum pump interruptions increase CO2 load to the sorbent sub-system by 50-100%

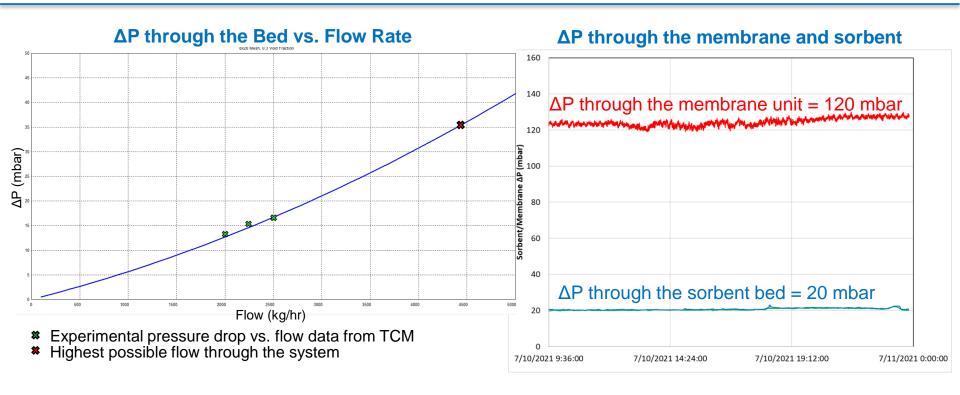
CO₂ Mass Balance



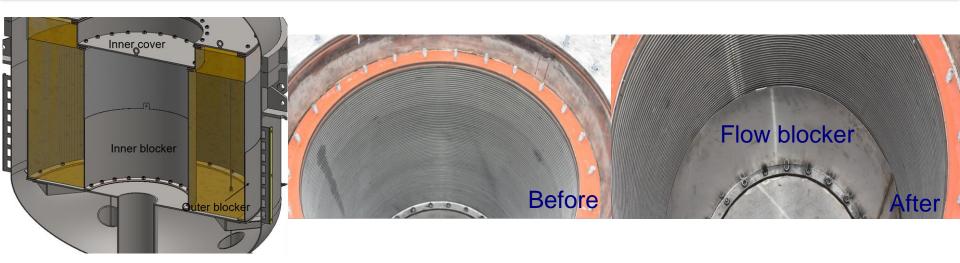
† - includes 70 hours (≈ 3 days) and 7.2 tonne of CHP flue gas testing at the end of the campaign

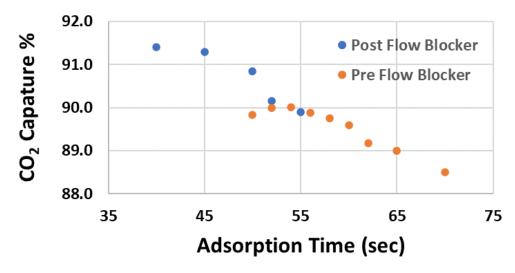

Performance Stability

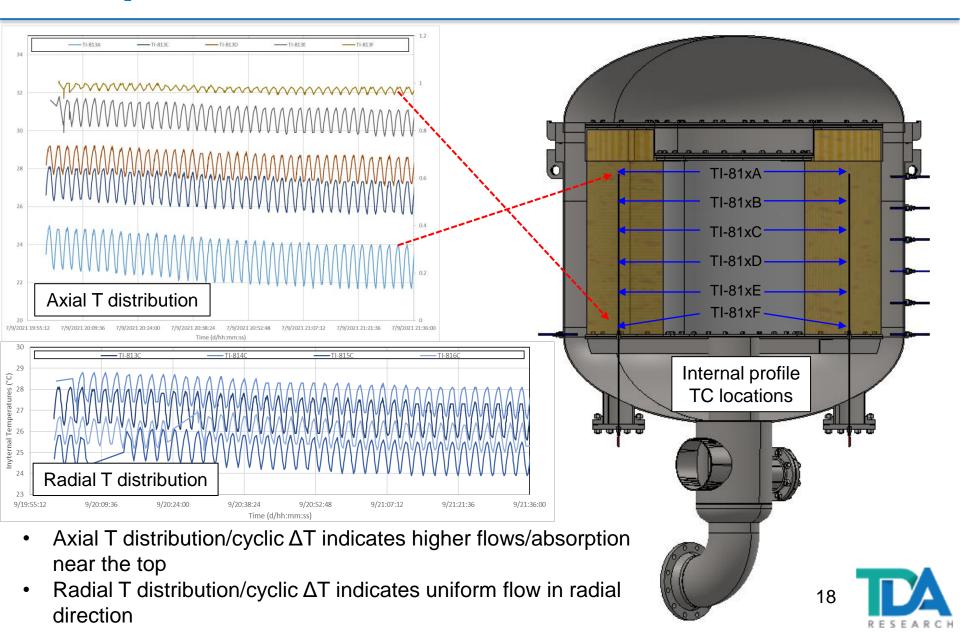
- Performance stability is checked periodically under several baseline conditions
 - Overall CO₂ capture efficiency of the system was measured over a range of regeneration air/retentate flow (A/R) ratios
 - The chart compares two A/R ratios in three different months (summer/fall/winter) during the test program
- No measurable change in system performance was observed through eight months of testing

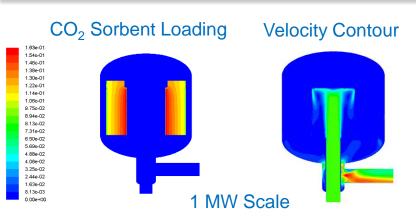


High CO₂ Capture Efficiency (≥95%)

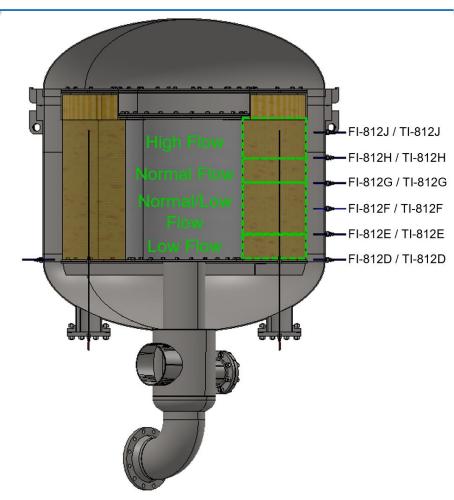

Pressure Drop Measurements


- TDA's radial sorbent bed design achieved a very low pressure drop
- At the 2000-2500 kg/hr flue gas flow, the total ΔP was measured as <20 mbar
- Actual measured ΔPs agree well with the design model
- The membrane unit treating the same flue gas flow and rejecting the same amount CO₂ generated ~120 mbar pressure drop (Stage 1 membrane)


Installation of Flow Blockers

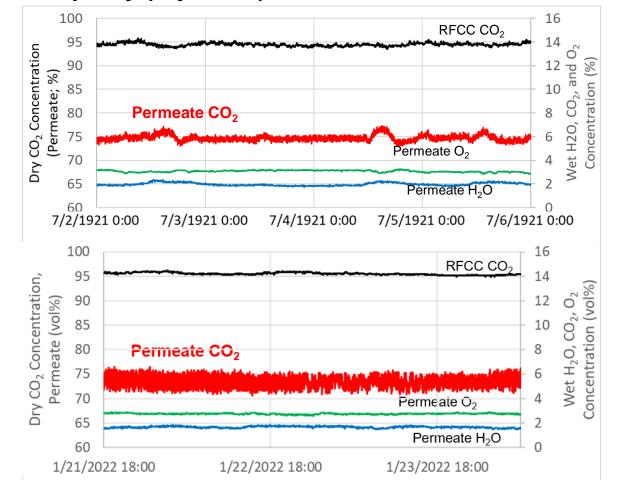

- Flow blockers are installed to block the flue gas flow into ~1/2 of the bed
- The optimum cycle time was determined at ~40 sec following the installation of flow blockers
- Blocking half of the bed resulted only in a short reduction in the cycle time

Temperature Distribution in the Bed



Flow Distribution in the Bed

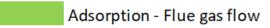
Radial Flow Distribution (Measured)

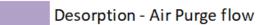


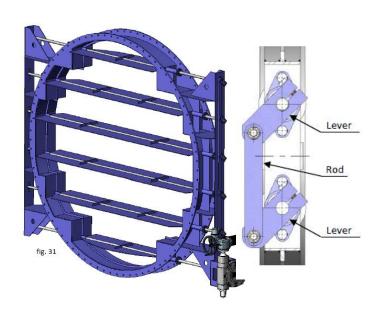
- Radial flow velocity measurements show uniformity within ± 2%
- Axial flow velocity measurements indicate a flow imbalance towards top of the bed

Membrane Performance

- Modified unit was fitted with MTR's Gen-1 Polaris membranes
- Stable performance with ~78-80% vol. CO₂ purity (dry basis)

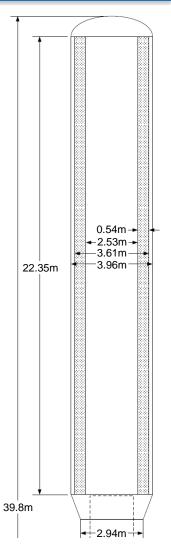

Membrane modules being loaded with new membranes prior to shipment

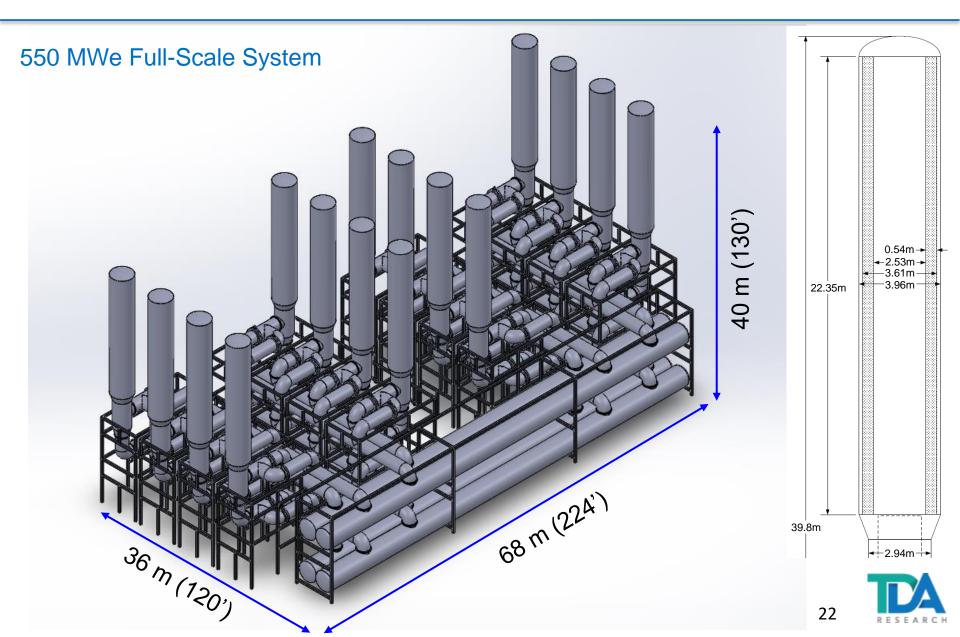



Reactor Vessel Design

Sorbent System - Hybrid

	Stage I	Stage II
Bed 1		
Bed 2		
60s	30s	30s



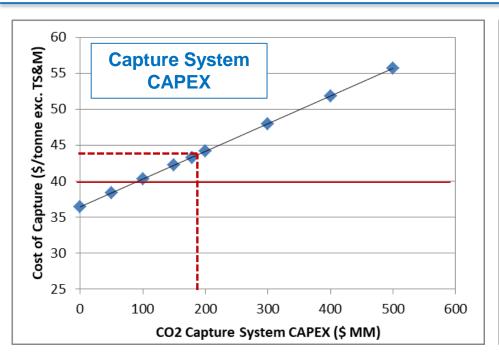

 Δ P=105 mbar

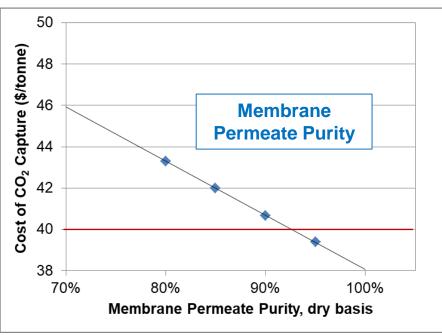
Module Size:	68.75 MW
No. of Trains:	8
Beds/Train:	2
Total Beds:	16
Flue Gas Flow:	74.5 m ³ /s
CO ₂ Flow:	1.22 tonne/min
Capacity:	1.8% Wt.
Cycle Time:	1 min
Sorbent Inventory:	67.8 tonne/m ³
Sorbent Density:	0.59tonne/m ³
Bed Volume:	116.4 m ³
Bed Area:	12.3 m ²

- Sixteen (16) radial beds
- SA516-70 carbon steel, 0.5" thickness
- 13 ft OD x 73¹/₃ ft T/T

3-D Layout of the Hybrid Sorbent System

Techno-economic Analysis


CASE NO.	UNITs	DoE 11	DoE 12	MTR WP Study	TDA + MTR 3
CO ₂ capture technology		Reference No Capture	Reference Amine	Membrane Only	Membrane- Sorbent Hybrid
CO ₂ purity from separation Module			95%	80%	80%
Steam turbine power	kWe	580,400	662,800	780,795	750,371
Total auxiliary consumption	kWe	30,410	112,830	224,605	200,371
Net power output	kWe	549,990	549,970	556,190	550,001
Auxiliary load summary					
Flue gas booster + CO ₂ removal	kWe	0	20,600	50,170	17,074
VSA Vacuum pump	kWe	0	0	37,475	33,578
CO ₂ compression	kWe	0	44,890	75,768	74,456
CO ₂ cryogenic purification	kWe	0	0	20,397	23,214
Common Auxiliaries	kWe	30,410	47,340	40,795	52,049
% Net plant efficiency	% HHV	39.3	28.4	28.7	29.45
As-received coal feed	kg/h	185,759	256,652	256,715	247,755
Carbon captured	%	0	90	90	90
Total Plant Cost	\$/kWe	1,981	3,563	3,461	3,006
Cost of Electricity (COE)	\$/MWh	\$ 80.95	\$ 137.30	\$ 132.30	\$ 121.85
Cost of CO ₂ Captured	\$/tonne	-	\$ 56.49	\$ 52.00	\$ 43.30


Final TEA Updates Underway Update to Rev. 4 basis

- Membrane sorbent hybrid system has a net plant efficiency of 29.45% compared to 28.7% in MTR-Worley Parson Study for membrane only system
- TDA's membrane sorbent hybrid system has 23% lower cost of capture compared to reference amine system

23

Sensitivity Analysis

- Cost of CO₂ Capture is estimated as \$43.3/tonne for the hybrid process at capture system cost of \$178.6 MM
 - Includes flue gas treatment subassembly, blowers, DCC etc.
- DOE 2030 Target of \$40/tonne can be met if CAPEX is reduced to \$110 MM
 - Trade off between dP/parasitic power loss and vessel dead volume/cost will be analyzed
- The DOE 2030 Target will also be met if the CO₂ purity gets above 92% by vol.

Acknowledgments

- DOE/NETL Project Manager, Andy O'Palko
- MTR Team, Thomas Hofmann, Jay Kniep, Tim Merkel, Erik Westling
- GTI Team, Chuck Shistla
- UCI, Ashok Rao
- TCM Team, Sundus Akhter, Magnus Aronsson, Kjetil Hantveit, Karstein Mangersnes, Blair McMaster, Stein Olav Nesse, Monica Iren Eidsheim Solend, Roger Solheim, Magne Andreas Tresvik