ROTA-CAP™: An Intensified Carbon Capture System Using Rotating Packed Beds

Osman M. Akpolat, R&D Manager
U.S. Department of Energy
National Energy Technology Laboratory
Carbon Management Project Review Meeting
August 15-19, 2022
DOE Contract No. DE-FE0031630
Outline

• Project Overview
• Technology Background
• Technical Approach Discussion
• Progress and Current Status
• Summary
Project Overview
ROTA-CAP™ – An Intensified Carbon Capture System Using Rotating Packed Beds

• Sponsor

• Funding: $2,784,222 DOE ($743,000 co-funding)

• Objective: The objective of this project is to develop and validate a transformational carbon capture technology—ROTA-CAP™

• Design, construct, test and model novel rotating packed bed (RPB) absorbers and regenerators

• Assess the performance of the integrated hardware and solvent under a range of operating conditions

• Test with simulated flue gas at GTI Energy

• Long term test with real flue gas at the National Carbon Capture Center (NCCC)
ROTA-CAP™ uses compact rotating packed bed (RPB) absorbers and regenerators for contacting flue gas with an advanced solvent such as Carbon Clean’s CDRMax ® for carbon capture.
Technology Background
• GTI Energy and its predecessor institutions GRI and IGT has experience on RPB process technology for natural gas dehydration and bulk acid gas removal process design and operation.

• GTI Energy Engineering Team reviewed mechanical requirements of the RPB sizing submitted by Carbon Clean.

• GTI Energy prepared initial RPB design concept, mechanical design of RPBs for construction and worked with our fabricator as well as in house construction team to build the test skid.

• Packing for RPB’s are provided by Montz Engineered Column Systems, Germany.
Technical Approach
Test Plan and Key Experimental Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rotational Speed</td>
<td>100–500 RPM</td>
</tr>
<tr>
<td>Absorber Liquid/Gas ratio</td>
<td>0.5–5.0 kg/m³</td>
</tr>
<tr>
<td>Solvent Circulation Rate</td>
<td>30–150 kg/h</td>
</tr>
<tr>
<td>Solvent Concentration & Viscosity</td>
<td>35–70 wt.% & 5–80 cP</td>
</tr>
<tr>
<td>Regenerator Operating Pressure & Temperature</td>
<td>0.0–1.0 bar(g) & 100–130°C</td>
</tr>
<tr>
<td>Flue gas composition</td>
<td>Synthetic - Natural gas-fired - Coal-fired</td>
</tr>
</tbody>
</table>

- 50kWe (1000kg/day CO₂ removal) scale integrated carbon capture skid
- Design, construct, test and model novel rotating packed bed (RPB) absorbers and regenerators
- Assess the performance of the integrated hardware and solvent under a range of operating conditions
- Test with simulated flue gas at GTI Energy
- Long term test with real flue gas at the National Carbon Capture Center (NCCC)
ROTA-CAP™ – Bench Scale Test Skid

Integrated (RPB absorber and RPB regenerator), Continuous, Bench-scale, 1 TPD test skid at GTI

GTI Conceptual design and 3D skid layout

Operational ROTA-CAP™ skid at GTI
Progress and Current Status
ROTA-CAP™ has two stages of absorber RPB and one regenerator RPB with a separate reboiler.
Test Skid Construction at GTI Energy

3D Layout of the ROTA-CAP™ Test Skid

RPB Delivery to GTI

Absorber RPB’s and Flue Gas Piping
Experimental Development Unit

- 1 ton CO₂ per day removal capacity
- Skid size is 20 feet x 8 feet x 8 feet (NOT OPTIMIZED)
- RPB diameter is about 1 meter
ROTA-CAP™ – Transportation from GTI to NCCC

Shipping Preparation

ROTA-CAP™ Skid Leaving GTI Energy

Arrival at NCCC
ROTA-CAP™ – Test Results
ROTA-CAP™ – Parametric Testing at GTI Energy

• Key Variables:
 • Absorber and Regenerator RPMs
 • CO₂ Concentration and Circulation rate
 • Regenerator Operation

Total lab operation:
About 400 hours

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Range Tested at GTI Energy</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO₂ Inlet Concentration</td>
<td>2.12 to 13.2%</td>
</tr>
<tr>
<td>Solvent Circulation Rate</td>
<td>0.5-1.8 GPM</td>
</tr>
<tr>
<td>Absorber and Regenerator Speed</td>
<td>Up to 600 RPM</td>
</tr>
<tr>
<td>Solvent Concentration</td>
<td>40% to 60% solvent</td>
</tr>
<tr>
<td>Gas Flow Rate</td>
<td>100 to 400 lb/hr</td>
</tr>
</tbody>
</table>
ROTA-CAP™ – GTI Energy Test Data

- Startup stabilization takes less than 1 hour after a set point change.
- Steady state within 2 hours.
- After regenerator optimization capture rate improved (dark blue data)
ROTA-CAP™ – SSTU Tests at NCCC (Fall 2021)

- Solvent concentration levels between 35% and 55%
- Fuel gas CO₂ concentration:
 - Coal Flue Gas at 11.9%
 - NG Flue Gas at 4.4%
 - NG Flue Gas at 10.1%
- L/G range between 1 and 4

Preliminary Review:

- Conventional column is unable to sustain stable operation above 55% concentration.
- Removal efficiency is similar in ROTA-CAP™ to the much larger conventional column.
- Lean loading impacted ROTA-CAP™ at lower L/G ratios when compared to the conventional column.
- Focus on ROTA-CAP™ regeneration optimization.
ROTA-CAP™ – Field Testing at NCCC

Five test campaigns:

1. October – November 2021
 - NCCC Boiler: NG flue gas (parametric)
 - Over 120 hours

2. March 2022
 - NCCC Boiler: NG Flue gas
 - Over 150 hours

3. Late April – May 2022
 - Power Plant: Coal Flue Gas
 - Over 200 hours

4. June 2022
 - Power Plant: Coal and Coal + NG Flue Gas
 - Over 450 hours

5. August 2022
 - Power Plant: Coal and Coal + NG Flue Gas
 - About 360 hours

Total field operation: >1200 hours

Total power plant flue gas operation: >1000 hours
Long Term Testing at NCCC

Test Campaign 2:

• Feed gas was from NCCC’s NG boiler. Feed gas is diluted with air or augmented with CO₂.

• Achieved 93% removal efficiency under all conditions.

• The CO₂ product is consistently about 95% purity.

• The skid reaches steady state operation in about 2 hours.
Long Term Testing at NCCC

Test Campaign 3:

- **Power Plant Feed:** Coal
- **Operation Hours:** 195
- **Removal Efficiency:** >90%
- **Solvent Concentration:** 35-40%

Test Campaign 4:

- **Power Plant Feed:** Coal + NG
- **Operation Hours:** 455
- **Removal Efficiency:** >95%
- **Solvent Concentration:** 45-50%
Capture Efficiency as a function of L/G:

- Collective data from Test Campaigns 3, 4 and 5
- Process simulation model solutions are in the indicated area.
ROTA-CAP™ – Future Development
ROTA-CAP™ – Future Projects and Scale Up Plan

Evaluating different industrial emission sources:
- Steel
- Concrete
- Petrochemical

Process simulation and preliminary TEA's prepared for:
- 2.5 TPD scale industrial emission application
- 5 TPD and 10 TPD NGCC application

Commercial unit size expected at 10,100 and 300 TPD
Summary:

- ROTA-CAP™: A compact and more versatile process compared to other next generation CO₂ capture technologies
- First RPB absorber AND RPB regenerator integrated, continuous, bench-scale CO₂ capture skid
- Successful power plant flue gas operation for more than 1,000 hours
- RPB reactors are agnostic to the solvent used
- Challenges of scale up from bench-scale to commercial scale; likely limited to modular design approach

Next Step:

Bench-scale to Pilot-scale
Acknowledgements

• Financial Support

- DOE NETL
 Bruce Lani
 Andrew O’Palko
 Carl P. Laird
 Lynn Brickett
 José Figueroa
 Dan Hancu

• NCCC Team
Disclaimer

This presentation was prepared by GTI Energy as an account of work sponsored by an agency of the United States Government. Neither GTI Energy, the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors herein do not necessarily state or reflect those of the United States Government or any agency thereof.
GTI Energy develops innovative solutions that transform lives, economies, and the environment.