

Engineering Design of a Linde-BASF Amine Technology for H₂ Plant Flue Gas DOE Award No. DE-FE0031943

Minish M. Shah Linde Inc. August 15, 2022

U.S. Department of Energy National Energy Technology Laboratory 2022 Carbon Management Project Review Meeting Pittsburgh, PA, August 15 – 19, 2022

"© Copyright 2022 Linde Inc. All rights reserved."

Acknowledgement and Disclaimer

Acknowledgement

• This material is based upon work supported by the Department of Energy under Award Number DE-FE0031943.

Disclaimer

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Project Overview

- Project cost \$1.969 MM: DOE funding \$1.5 MM; Linde cost share \$0.469 MM
- Project duration: 24 months (October 2020 to September 2022)
- Project participants:

Project Objectives

- Engineering design of a Linde-BASF advanced post-combustion CO₂ capture technology at the H₂ Plant
- Site-specific engineering study to create a strong foundation to pursue a commercial project
 - Capture 90% of CO_2 from SMR flue gas and compress to 2200 psia
 - Estimate CAPEX and OPEX and perform technoeconomic analysis to determine CO₂ capture cost

Technology Background Process Design

- Key advantages
 - 95% CO₂ capture rate
 - Reboiler duty ~2.7 GJ/tonne
 - High regeneration pressure
 - Minimal solvent loss to atmosphere
 - Minimal amine waste with the use of reclaimer
 - Structured packing in absorber
- Key challenges
 - Integration with existing flue gas stack
 - Shipping limitations for large single train plant

– High CAPEX

Technology Background Development and Scale-Up for Commercialization

Solid Foundation for Commercialization

Technology Background Host Site Selection

- Selected one of the largest SMR plants from Linde's Gulf Coast fleet
 - Sufficient space available adjacent to existing SMR
 - Sufficient capacity for additional utilities
- 400+ miles of pipeline network connects multiple plants and customers
 - Includes H_2 storage cavern
- Proximity to CO₂ sequestration sites
 - Saline aquifers
 - Depleted oil and gas fields
 - Large storage capacities for >20 years operation

Technical Approach/Project Scope

Decision Point	Date	Success Criteria	
End of Project goal	09/30/2022	Cost estimate for PCC completed with accuracy of +/- 25%	+/-20% achieved

Project type – Retrofit

No changes to SMR process

Plant concept

- CO₂ captured from SMR FG (base case 1)
- Single train design
- SMR export steam used in PCC unit
- CO₂ capture capacity ~1.4 million tonnes/year
- Case 1 used as the basis for engineering study
 - Scope 1 mitigation 88%
- Case 2 assessed during TEA
- Scope 1 mitigation ~94%

Feed - SMR Flue Gas			
Temperature, F	~320		
Pressure, psia	14.7		
Composition (mol%)			
$N_2 + Ar + O_2$	~62%		
CO ₂	~18%		
H ₂ O	~20%		
Trace impurities	< 100 ppm		

CO ₂ Product Specifications			
CO ₂ purity	>95%		
Temperature, F	<120 F		
Pressure, psia	2200		
Water	< 630 ppm		
Oxygen	<10 ppm		
Nitrogen	<4%		

System Boundary

CAPEX Estimate Approach

- Basis of design and basic technology package
- BFD and P&ID
- HAZOP of ISBL and OSBL scope
- Basic 3D Model
- Equipment specifications
- Equipment quotes and bid evaluations
- Logistics Study
- Constructability/layout reviews
- Permitting Analysis
- Execution schedule
- Risk analysis
- Owner's costs
- TOC (total overnight capital) estimate
- TASC (total as-spent capital) estimate per DOE method

3D Model

PCC plant capacity – 3730 TPD

- Plot area ~13,000 m²
- CO₂ 99.9% at 2200 psig

Performance Summary

Process Performance				Carb	on F	ootprint	
Variable Reboiler duty Power Water Cooling tower blowdown Wastewater (Amine unit) * Partly provided by SMR set	Consumption/T CO2 2.7 GJ* 135 kWh** 400 – 460 gal 60 – 120 gal 1 gal	12 10 8 6 4 2 0	Ca	rbon Footp	rint kg	CO2/kg H2	 Upsteam NG Scope 2 Scope 1 Steam credit
[^] Partly supplied by steam	turbine	-2	Ba	se Ca	ise 1	Case 2	

CAPEX Estimate

Total as spent cost (TASC)

- Equipment costs generally in line with the expectations
- Construction accounted for significant portion of total
 - Higher degree of on-site construction
 - Site-specific shipping limitations required more field assembly
 - Large equipment required more foundation/piling
- Higher risk profile for construction at this large scale
- CAPEX reduction opportunities have been identified

Technoeconomic Analysis Results

- NETL methodology adapted for levelized cost of CO₂ capture
 - CAPEX and OPEX of PCC plant converted to \$/T CO₂
 - Real dollars used as basis for the analysis
- Two scenarios of project financing considered
- LCOCCS ranges from \$71 to \$101/T CO₂
 - Financing assumptions can have large impact on costs

	Case 1A ¹	Case 1B ²	cos
Scenario Project life	30 ¹	15	
Debt	38% ¹	0%	
Equity	62% ¹	100%	
Real \$ cost of debt	5.15% ¹	2.94% ²	
Real \$ cost of equity	3.10% ¹	7.84% ²	
Fixed charge rate (FCR)	0.06	0.13	

1. Financial parameters from 'Comparison of ... H2 Production Technologies' DOE/NETL-2022/3041

2. Financial parameters from 'QGESS Cost Estimation Methodology ..' NETL-PUB-22580

- Completed engineering design for retrofitting existing SMR H₂ plant with PCC
- Capture capacity of ~1.4 MM tonnes/yr
- ~95% Capture rate achievable
- CCS cost could vary significantly depending on the financial assumptions
- Evaluation of CAPEX reduction options will be focus of future efforts

Thank you for your attention.

Linde Inc. Minish M. Shah Tel +1 716-879-2623 minish.shah@linde.com www.linde.com

