

Application of a Transformational UKy 3 Ton/Day CO₂ Capture System at a Steel Process Plant DE-FE0032133

Kunlei Liu and Heather Nikolic

Institute of Decarbonization and Energy Advancement University of Kentucky Lexington, KY https://caer.uky.edu/co2capture/

August 15-19, 2022

Institute for Decarbonization and Energy Advancement

Energy

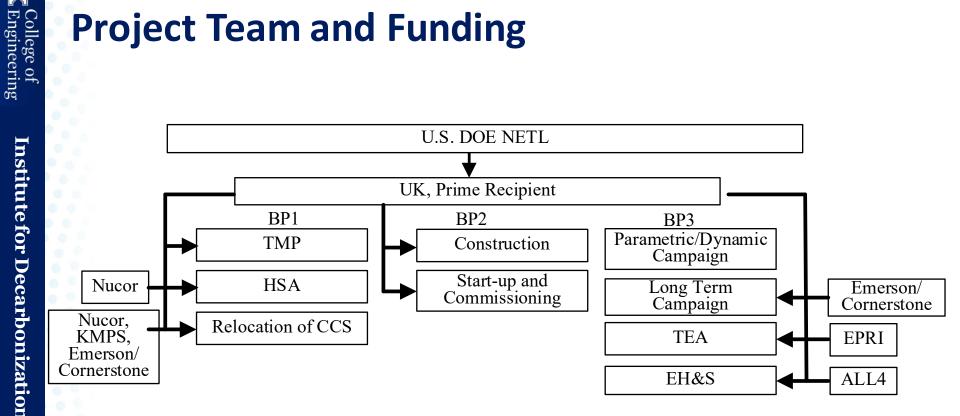
Project Objective

Demonstrate the UK CO₂ capture process at Nucor Steel Gallatin treating electric arc furnace evolved gas with a CO₂ concentration of ~1.5 vol%.

BP1

- Design
- Contractor selection

BP2


- Site Prep
- Module Erection
- Tie-in at Nucor

BP3

- Evaluation
- Data Analysis
- Reporting

2

Project Team and Funding

	DOE-NETL	Cost Share	
Total:	\$4,999,965	\$1,250,523	\$6,250,488
Percent Share:	80%	20%	100%

Background - Development

UK Solvent

- <\$5/kg chemical cost
 - ~6400 experimental hours at bench and small pilot scales
 - NG and coal flue gas evaluations
 - 3-20 vol% CO₂ inlet concentration evaluations
 - \bullet Modeled by small pilot experimentally verified Aspen $Plus^{\circledast}$
 - Solvent regeneration energy as low as 1040 BTU/lb CO_2
 - Make-up rate of 0.6 kg/tonne CO₂

H3-1 Solvent Performance: ~27% reduction in solvent regeneration energy, 35-45% reduction in circulation rate, low degradation compared to 30 wt% MEA

H3-1

Solvent

Campaign

CCSL

Solvent

Campaign

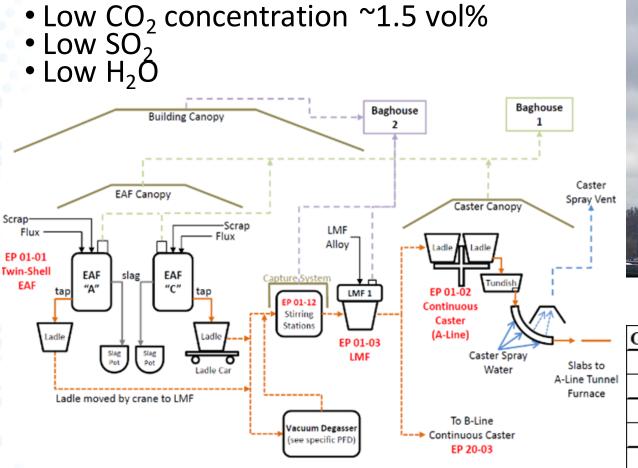
CAER

Solvent

Campaign

Process

CCSL Solvent Performance: ~30% reduction in solvent regeneration energy, 40% reduction in circulation rate, low degradation compared to 30 wt% MEA


• CAER Solvent Performance: ~20% reduction in solvent regeneration energy, 30% reduction in circulation rate, low degradation compared to 30 wt% MEA

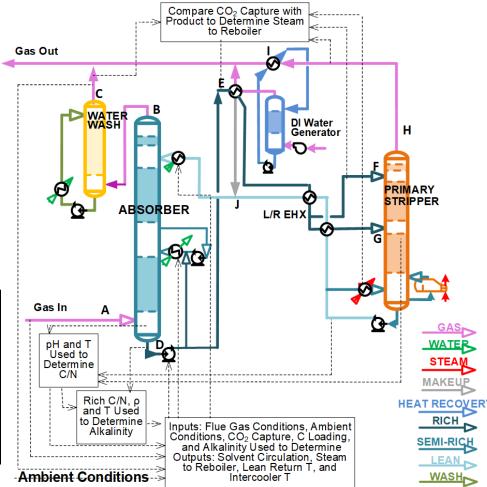
• Solvent Cost <\$5/kg chemical

• Absorber Temperature Control via discretized packing

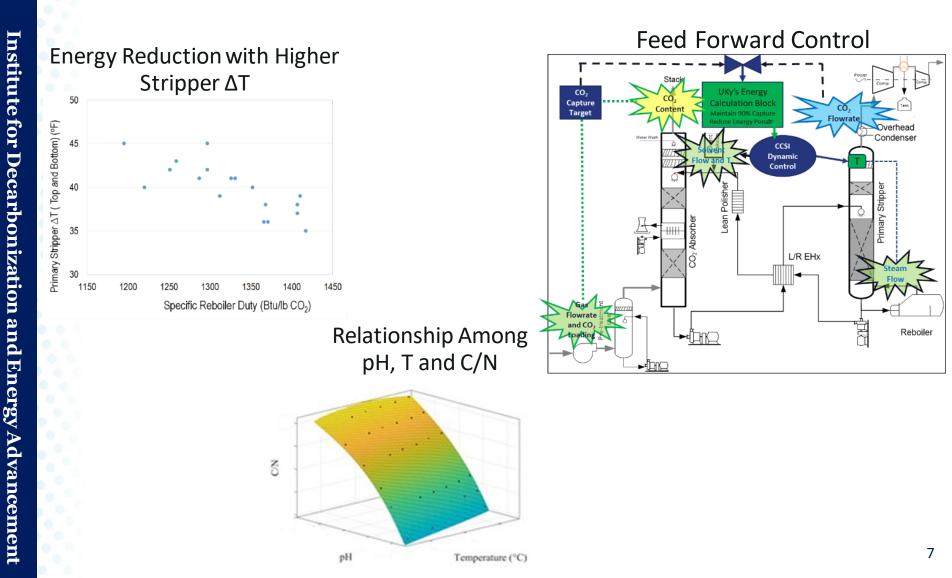
- Modifications In-situ liquid redistributor
 - Solvent spray with <50 μm droplets leads to 2.6-4.1X?increased CO2 absorption per unit volume
 - Staged feed to Absorber and Stripper
 - Heat Integration with steam cycle feedwater
 - Solids circulation solvent recovery system reduces amine emissions by 50%

Background – Adaptability and Conditions

Flue Gas Conditions


	Gas Component	Value
	CO ₂ , vol%	0.5-1.5
1	O ₂ , vol%	19-20
	H ₂ O, vol%	<5
	SO ₂ , ppm	0.23-4.5
	NO _x , ppm	1.6-5.2
	N ₂ +Ar	Balance
	Flowrate, cfm	1,000,000
	Temperature, ⁰F	80-100
	Pressure, psi	14.6

Technical Approach


- Process Simplified
- Low L/G
- Specialized absorber packing
- Auto-set points for input energy minimization
- Lower specific reboiler duty via split rich stripper feed

Split Flow % (Warm/ Hot)	CO ₂ %	Solvent Flow (lb/hr) DP (inH ₂ O)	% Capture	BTU/lbC O ₂	Lean Loading Alkalinity (mol/kg)	Rich Loading Alkalinity (mol/kg)
20%/		100.1	96.9	045	0.66	1.72
80%	4%	2.3	86.8	945	4.906	4.874
0/1000/	470	95.1	83.8	1073	1.09	1.89
0/100%		2.3	03.0	10/2	5.068	4.894

Technical Approach Just-in-time optimal operati strategy, collaborating with

Just-in-time optimal operation via feed-forward process control strategy, collaborating with Emerson

Project Milestones

Task	Milestone Title/Description	Planned Completion Date		
1.0	Project Kickoff Meeting Held	8/24/2022		
1.0	TMP Complete	8/24/2022		
2	Host Site Agreement (HSA) Complete	10/24/2022		
3	PDP Complete	10/24/2022		
3.2	Boiler Procurement Decision Point Meeting	8/24/2022		
3.6	General Contractor Selected	4/24/2023		
4.1	Nucor Site Prepared for Installation	6/24/2023		
4.3	CCS Installed at Nucor	10/24/2023		
5	Test Plan Complete	10/24/2023		
6	Commissioning Complete	4/24/2024		
	Parametric/Dynamic Campaign Complete (Demonstrate 95% CO ₂ capture			
7	efficiency and CO ₂ product stream purity of \geq 95%; quantify absorber	9/24/2024		
<u> </u>	performance and reboiler duty)			
0	Long-term Campaign Complete (1000 hours showing optimized process	12/24/2024		
8	conditions, dynamic stability and operability)	12/24/2024		
9	TEA Complete	1/24/2025		
10	EH&S Complete	1/24/2025		

Project Success Criteria

Decision Point	Date	Success Criteria						
		1) Contract in place with engineering design firm for CCS						
Completion		reconfiguration and relocation						
of BP1	4/24/2023	2) Boiler specified and procured						
		3) Contract in place with general contractor for relocation of CCS						
Completion	4/24/2024	1) Commissioned CCS at Nucor Steel Gallatin Site						
of BP2	4/24/2024	2) Acceptance of test plan						
		1) At least 2 months of engineering-scale testing campaign of three						
		transformational CO ₂ capture technologies at the Nucor Steel						
	4/24/2025	Gallatin Site.						
		 Demonstrated ≥95% CO₂ capture efficiency 						
Project Completion		3) Demonstrated CO ₂ product stream purity of \geq 95%						
		4) Techno-economic analysis showing Cost of Capture and Cost of						
		CO ₂ Avoided, calculated for gross CO ₂ captured and net CC						
		captured						
		5) Attainment of TRL 6 of the three proposed transformational CC						
		capture technologies						

Progress: Relocation Activities

ineering

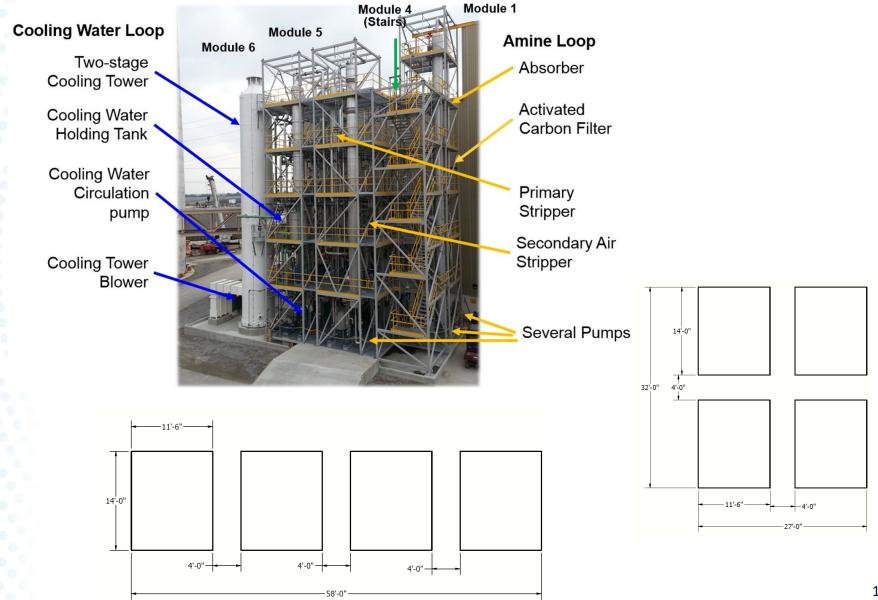
	BP1 Task	Progress
2	Host Site Agreement (HSA)	Communication between UK and Nucor
3	Unit Reconfiguration and	
5	Relocation Planning	
3.1	Reconfiguration	
3.1.1	Absorber Internals	Quote for CO_2 capture unit reconfiguration received
3.1.2	Split Rich Stripper Feed	from KMPS.
3.1.1	Advanced Control Strategy	Quote for BOP and bid package preparation received
3.1.4	Process Simplification	from B&M.
3.2	Steam Generator Procurement	
3.3	Site Survey and Prep	
3.6	General Contractor Selection	Initial meeting with UK Purchasing held.
3.7	HAZOP	

Capital Project request defined by UK is in the process

- Board of Trustee approval
- Establishing plant account
- Issuing RFP for engineering firm selection
- Solicit public bid for BOP preparation and module relocation

Ex College of Engineering

Location at Nucor Steel Gallatin

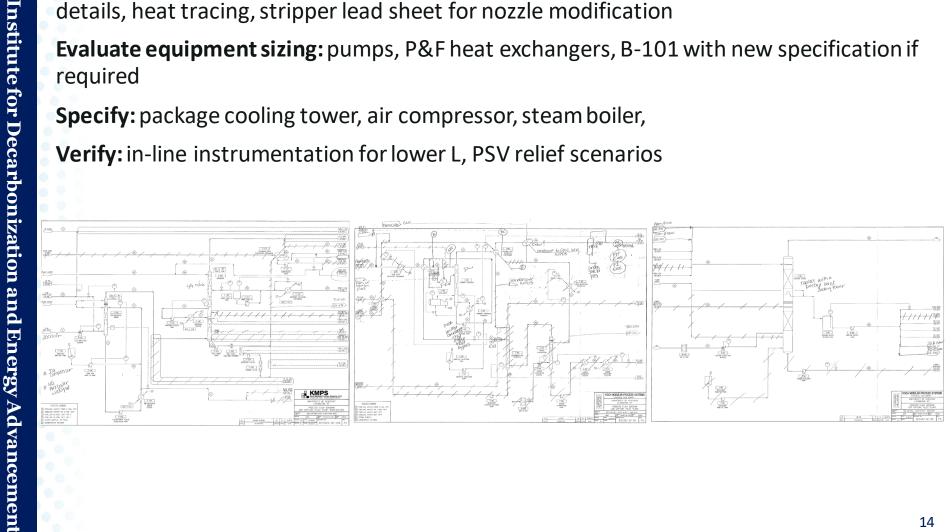


Module Arrangement

College of Engineering

Summary – Expected Output

- Firsthand experience and knowledge on low concentration CO₂ capture – performance, solvent management and dynamic operability
- Control strategy automatically maintains the target CO₂ capture efficiency while continuously minimizing the solvent regeneration energy.
- Full-scale deployment if the post-combustion CO₂ capture is feasible and cost effective


Capture Process Simplification and Relocation

Update: PFDs, P&IDs, utility summary, 3-D model, piping isometrics, BOM, piping support details, heat tracing, stripper lead sheet for nozzle modification

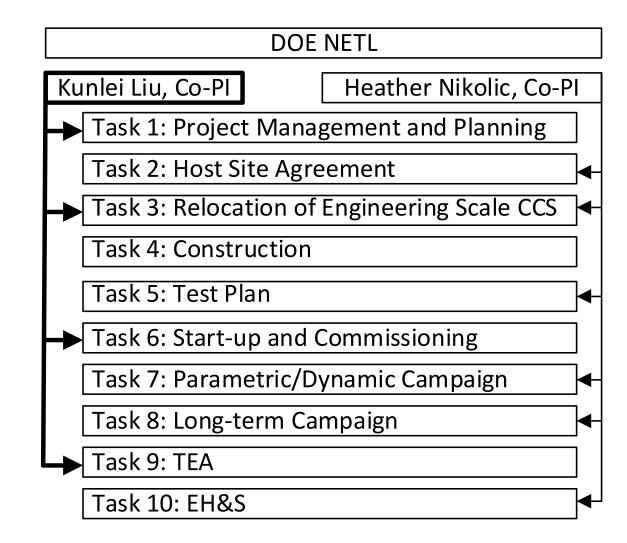
Evaluate equipment sizing: pumps, P&F heat exchangers, B-101 with new specification if required

Specify: package cooling tower, air compressor, steam boiler,

Verify: in-line instrumentation for lower L, PSV relief scenarios

Acknowledgements

U.S.DOE NETL: Krista Hill, Jose Figueroa, Dan Hancu and Lynn Brickett Nucor Steel Gallatin: Gordon Ewell and Roy Syrmanske EPRI: Abhoyjit Bhown Emerson/Cornerstone: Vigen Biglari ALL4: Clayton Whitney



Appendix: Gantt Chart

I	
S	
đ.	
H	
P	
fc	
H	
ē	
2	
Ĩ	
ğ	
2	
2	
N	
đ.	
6	
Decarbonization a	
2	
R	
몹	
le	
H	
Energy	
A	
d	
Institute for Decarbonization and Energy Advancement	
5	
Ð	
B	
e	
H	

Task Name	Start	Firsh	2021	02 03 04 01	02 02 04 2034	1
1. Project Management and Planning	Mon 4/25/22	Thu 4/24/25				
1. PMP	Mon 4/25/22	Tue 5/24/22		10		
1.2. TMP	Mon 4/25/22	Wed 8/24/22				
adget Period 1	Mon 4/25/22	Mon 4/24/23		E		
HSA	Mon 4/25/22	Mon 10/24/22				
Relocation of Engineering Scale CCS	Mon 4/25/22	Mon 4/24/23		1		
1. Reconfiguration	Mon 4/25/22	Mon 4/24/23			-	
1.1. Absorber Internals	Mon 4/25/22	Wed 8/24/22				
.1.2. Split Rich Stripper Feed	Mon 4/25/22	Wed 8/24/22				
1.3. Advanced Control Strategy	Mon 4/25/22	Wed 8/24/22				
1.4. Process Simplification	Mon 4/25/22	Wed 8/24/22				
3.2. Boiler	Mon 4/25/22	Wed 8/24/22				
3.3. Site Survey and Preparation	Mon 4/25/22	Mon 4/24/23				
3.4. Deconstruction and Removal Planning	Mon 4/25/22	Mon 10/24/22				
5.5. Shipping Preparation	Mon 4/25/22	Mon 10/24/22				
.6. General Contractor Selection	Tue 10/25/22	Mon 4/24/23				
.7. HAZOP Evaluation	Mon 8/1/22	Wed 8/31/22				
Sudget Period 2	Tue 4/25/23	Wed 4/24/24				ľ
Construction	Tue 4/25/23	Tue 1/23/24				
1. Foundation	Tue 4/25/23	Sat 6/24/23				
2. Decommissioning and Shipping	Sun 6/25/23	Thu 8/24/23				
3. Installation	Fri 8/25/23	Tue 10/24/23			and a second	
4. Tie-ins	Wed 10/25/23	Wed 1/24/24				
Test Plan	Tue 4/25/23	Tue 10/24/23				
Start-up and Commissioning	Tue 4/25/23	Wed 4/24/24	3			
1. Commissioning Plan	Tue 4/25/23	Tue 10/24/23				
2 Start-up and Commissioning	Thu 1/25/24	Wed 4/24/24				
Budget Period 3	Thu 4/25/24	Thu 4/24/25				
Parametric/Dynamic Campaign	Thu 4/25/24	Tue 9/24/24				
1. Absorber Packing Performance	Thu 4/25/24	Sat 8/24/24				
2. Reboiler Specific Duty	Sun 8/25/24	Tue 9/24/24				
. Long-term Campaign	Wed 9/25/24	Tue 12/24/24				
8.1. System Dynamic Stability and Operability	Wed 9/25/24	Thu 10/24/24				
3.2. Reboiler Specific Duty Minimization	Fri 10/25/24	Sun 11/24/24				
3. Packing Operability under Cyclic Operating Environment	Mon 11/25/24	Tue 12/24/24				
. TEA	Thu 4/25/24	Thu 4/24/25				
9.1. Modeling	Thu 4/25/24	Thu 10/24/24				
0.2. Equipment Sizing	Fri 10/25/24	Tue 12/24/24				
9.3. Analysis	Wed 12/25/24	Mon 3/24/25				
10. EH&S Risk Assessment	Thu 4/25/24	Thu 4/24/25	12			

Appendix: Organizational Chart

Engineering